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Goal Statement 

Project Goal – Develop catalysts and processes for cost-
competitive production of hydrocarbon fuels from biomass-
derived syngas 

 
– Invent novel catalyst/reactor systems informed by the 

development of structure-function relationships 
  
– Provide data and validation for IDL platform TEAs  
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Quad Chart Overview 

• Project start: 2012  
• Project end: 2022 
• 5% complete 

• Tt-G fuels catalyst development 
o Selectivity to hydrocarbon fuels 
o Impactful product yield 

• Process and market-driven attributes 
(achieve MFSP ≤ $3/gal) 
o Compatibility with biomass syngas 
o Production of distillates/jet 

preferred to gasoline 
o Minimize fixed and variable costs 
o Product yield and purity 
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• Total project funding to date 
o $600k DOE 

• FY13 funding 
o $200k ANL 
o $400k NREL 

Timeline 

Budget 

Barriers 

• ANL/NREL 
• Project Management via AOP/PMP 

Partners 



Overview: Biomass Gasification for Fuels 
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Overview: Project Objectives & Timeline 

Objectives 
 

– Develop novel and selective 
catalysts to maximize 
conversion of syngas to distillate 
and gasoline-range hydrocarbon 
fuels 

– Improve understanding of 
selectivity to different products 
through in-situ and operando 
catalyst characterization 

– Design catalyst + process 
strategies to meet MFSP goals 

5 

Timeline 
 

– FY13: Identify structure-function 
relationships for an advanced 
alkylation catalyst 

– FY14: Catalyst development for 
oligimerization, alkylation, and 
hydrogenation, generate SOT 

– FY15: Data collection and 
validation for process models, 
catalyst refinement 

– FY16: Scale-up of catalysts 



Approach 
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ID catalyst(s) with 
potential for  
innovation 

synthesize 
catalyst & test  
performance 

compare 
to state 
of art 

stop work on 
catalyst 

characterization, 
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data for process model 

rigorous testing/ 
process modeling/ 

validation 

technoeconomic 
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cost 
targets 
met? 

project 
success 

milestones 
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Target: modeled and pilot-validated MFSP of $3/gal 
Catalyst development informed by TEA and directed by progress, go/no-go decision points, etc.  

Technical Approach: Integrate experimentation and technoeconomic evaluation to achieve cost targets 
 

Management Approach: DOE-approved Project Management Plans detail schedules/milestones/risk abatement 
 



Hydrocarbon from Syngas or Biochemical Intermediates 
Process and Catalyst Driven by Product Requirements 
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• Aviation Fuels 
– Jet A (most common commercial fuel) 
– Jet B (cold regions) 
– JP-X (military grades) 
– Requirements: 

• Essentially zero O, S 
• C8-C16 
• Very low freeze point = branching and unsaturation (≤ - 40°C) 
• High auto ignition temperature (≥ 210°C) 
• Aromatics ≤ 20% 

• Diesel 
– Requirements:  

• high cetane (≥ 40 required) = minimal branching 
• High energy density = some aromatics (≤ 30% allowed) 
• Low cloud point = branching 
• C8-C21 
• Low S (≤ 15 ppm, may get lower with new fuel standards) 
• No O allowed for non-FAME blends without EPA register/waiver/E-tests (big $) 

• Gasoline 
– Requirements: 

• High octane (≥ 87) = branching, low MW 
• C4-C12 
• High energy density = more aromatics 
• Aromatics ≤ 40% (Europe), similar regulations coming for US 
• Low O, S (≤ 3.7%, 80ppm, may get lower with new fuel standards) 
• Required ranges for boiling, vapor pressure 
• Stable, no crystallization (durene +) or phase separation in water 
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Hydrocarbon from Syngas or Biochemical Intermediates 
Thesis Statement 
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Reactive intermediate ‘building blocks’ can be used to selectively produce 
fuel-range hydrocarbons using novel acid and hydrogenation catalysts 

H+ Brønsted 

— H2O  

Alkylates 

+ H2  
M 

Aliphatics 

H+ Lewis 
+ H2  

Oligimers 



• Acidic zeolites produce aromatics, olefins and paraffins 
• Product selectivity is controlled by process conditions 
• Catalyst deactivation occurs by coke formation (short term) and 

dealumination (long term) 
• Other alcohols and ethers can also be used as reactants 
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Example of Hydrocarbons from Syngas Intermediates 
Hydrocarbons from Methanol 



Example of System with Potential for Improvement 
Increase Selectivity to C7 Over Zeolite Catalysts 

• Evaluating reaction 
pathway and surface 
chemistry to reduce 
cracking products (C4) 
 
 
 
 

• Investigating process 
intensification strategies 
to improve yield of C7 and 
to reduce number of steps 
in reaction sequence 
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Target: increase 
selectivity to C7+ 



Selectivity Control 
• Increase the methyl 

transfer to olefins vs. 
MTO 

• Balance hydrogen 
transfer reactions 

• Better catalysts by 
tuning of the active 
site, e.g. metal 
exchange and 
substitution 
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D. A. Simonetti, R. T. Carr, E. Iglesia, J Catal, 285 (2012), 19-30 

Database of  
Zeolite Structures 

Zeolite BEA 

Example of Selective Hydrocarbon Synthesis 
Reaction Pathway to Triptanes (C7) 
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Scientific questions to address: 
• What is the best method of metals addition, e.g., impregnation, ion 

exchange, other? 
• What is the most effective metal ion? 
• What is the structure of the metal ion under reaction conditions? 
• What is the catalytic function of the metal ion, e.g., acidity, hydrogen 

transfer, MeOH activation, other? 

Pathway to Selective Hydrocarbon Synthesis 
Novel Catalyst Synthesis 



Operando X-ray Absorption Spectroscopy is 
Used to Determine Catalyst Structure 
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• Extended X-ray Absorption Fine Structure 
(EXAFS) 

– Types of neighbors, number of 
neighbors, bond distances 

• X-ray Absorption Near-Edge Spectroscopy 
(XANES) 

– Oxidation states, information regarding 
adsorbates and surface coverage 

Advanced Photon Source 

• In situ plug flow reactor (up to 50 atm, 600°C, 
gas- or liquid-phase reactions) 

– Types of neighbors, number of 
neighbors, bond distances 

• Developed by Argonne’s Institute for Atom-
efficient Chemical Transformations (IACT) 

– Office of Science-funded Energy Frontier 
Research Center (EFRC) 



• Catalysts prepared by ion 
exchange and impregnation 

• In situ X-ray absorption shows: 
– Same metal oxidation state  

• Tetrahedral coordination (low CN) 
• Short metal-oxygen bond length 

– Stable: does not form bulk oxides 
in He or O2 and does not reduce in 
H2 up to 500°C  

• Adsorbs 2 equivalents of NH3, 
showing that the material is a 
Lewis acid 
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Example of Catalyst Characterization 
Addition of Ga to Zeolite H-BEA 



• EXAFS of Ga on SiO2 is identical to 
Ga-BEA, i.e. single site, Td Ga(III), 
Lewis acid 
• Thus, SiO2 work is transferrable 

knowledge to other systems 

• Catalytically active for hydrogenation 
– Increases hydrogen transfer activity 

• Coordinates selectively to MeOH 

• Doesn’t oligomerize or crack olefins 
like H+ 

– Critical to tuning selectivity for 
molecule building instead of cracking 
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Ga(III) 

Infrared Spectra of Adsorbed Pyridine 

Ga(III)/SiO2 
SiO2 
Lewis 
Bronsted 

He 

H2 

L 

L 
L + B 

L + B 

Example of Structure-Function Relationships 
Role of Ga on SiO2 



Relevance 

• Addresses Thermochemical Conversion R&D Strategic Goal: 
“Develop technologies for converting feedstocks into cost-competitive commodity liquid 
fuels such as renewable gasoline, jet fuel, and diesel.” 

–  Fundamental + applied approach for efficient production of hydrocarbons at 
biomass scale 

– Research and development guided by technoeconomic feedback 

– Combines core competencies at two premier DOE labs: catalyst development 
(NREL) and molecular-level catalyst characterization (ANL)  

• Project addresses two pathways: 

– M 6.13.1: Produce non-ethanol fuel from biomass syngas 

– M 6.13.3: Validate integrated process at pilot scale 

• Contributes to BeTO portfolio of biomass conversion pathways: 

– Hydrocarbon synthesis from biomass via indirect liquefaction 

– Leverages significant investment in prior years (equipment, expertise, facilities) 

– Combined with direct liquefaction platform, lowers the overall risk of meeting 
MFSP goals by 2022 
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Success Factors  

• Catalyst Characterization: 
– Identify physical properties that influence selectivity 

– Develop testable hypotheses for methods of selectivity 
adjustment 

• Catalyst Development 
– Leverage data from characterization to design catalysts with 

improved selectivity 
– Minimize catalyst cost and complexity 

• Process Design: 
– Integrate catalytic reactors within existing gasification/tar 

reforming designs and models 
– Combine unit operations and optimize heat flows to minimize 

capital and operating costs 
– Configurations that maximize product yield (gal/ton biomass) 
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Challenges  

• Product selectivity 
– Avoid formation of oxygenated final products 
– Produce molecules that are suitable as diesel and jet 
– Minimize light gas formation 

• Catalyst cost 
– Use of non-precious metals 
– Robust and/or regenerable materials 
– Straightforward and scalable synthesis 

• Product yield  
– Minimize number of process steps, tail gas streams 
– Minimize carbon loss to light gases and CO2 

– Minimize parasitic losses (compression, high temperatures, etc) 
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Future Work 

•  Characterize modified alkylation catalyst 
– Identify possible options to reduce byproduct formation 
– Develop improved activation protocols 
– Test improved activation procedures in a synthesis reactor 

 

•  Develop oligimerization catalysts 
– Target oligimerization of light olefins 
– Investigate mixed oxygenate intermediates 

 

• Process intensification 
– Combine syngas intermediate and hydrocarbon syntheses in single 

reactor 
– Cascade reactions: hotcool, high-pressurelow-pressure, etc. 

•  Rigorous characterization of novel synthesis catalysts 
– Leverage tools at the APS 
– Develop structure-function relationships  
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Detailed Milestones for FY13 and FY14 
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Due Date Milestone 
Type 

Milestone Title Comments 

12/21/12 E Evaluate mixed alcohol catalyst 
performance with complete byproduct 
recycle 

Complete, 
submitted for peer 
review 

3/29/13 D Process intensification for triptane 
synthesis 

Complete 

6/28/13 D Extended operation of fuel synthesis 
catalyst 

In-progress 

9/27/13 D Catalyst characterization at ANL In- progress 

12/20/13 D Demonstrate alkylation of mixed 
alcohols using acid catalysis 

Preliminary  

3/31/14 D Production of mixed olefins Preliminary 

6/30/14 D Oligimerization of mixed olefins Preliminary 

9/19/14 E Pilot reactor reconfiguration Preliminary/in-
progress 

9/30/14 D Catalyst characterization at ANL Preliminary 



Summary 
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• New project to develop catalysts and processes for cost-
competitive production of hydrocarbon fuels from biomass-
derived syngas 

• Catalyst development focuses on 
– Using reactive intermediates as ‘building blocks’ for producing 

fuel-range hydrocarbons with high selectivity 

– Applying operando X-ray absorption spectroscopy to develop 
catalyst structure-function relationships 

• Process development focuses on process intensification to 
reduce capital costs 

• Leverages NREL expertise and capabilities in biomass 
gasification and related syn-gas chemistry with ANL expertise 
in catalyst characterization 
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Additional Required Slides  
for Peer Evaluation 



Responses to Previous Reviewers’ Comments 

New Project – Not Applicable 
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Recent Publications and Presentations 

Publications 
• Hensley, JE; Ferrell, JR, 2013 “Impacts of oxygenate recycle on product 

composition from a K-CoMoSx Catalyst” Applied Catalysis A, submitted for 
review. 
 

Presentations 
• Ferrell, JR; Hensley, JE, “Mixed Alcohol Synthesis on K-CoMoSx Catalysts: 

Recycle Studies.” Presented by JR Ferrell at Western States Catalysis Club 
annual meeting, April 19, 2013, Provo UT. 
 

Reports 
• Hensley, JE, 2013 “Process Intensification for Triptane Synthesis,” NBC-

11153, National Renewable Energy Laboratory, Golden, CO. 
• Hensley, JE, 2012 “Evaluation of Mixed Alcohol Catalyst Performance with 

Complete Byproduct Recycle,” NBC-11138, National Renewable Energy 
Laboratory, Golden, CO. 
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Additional Slides 



Glossary of Terms 
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ANL Argonne National Laboratory 

AOP Annual Operating Plan 

APS Advanced Photon Source 

BEA Beta Zeolite 

Cx+ Indicates molecules containing 2 or more carbon atoms. For example, ethanol is a C2 alcohol, propane is a C3 hydrocarbon, etc. 

CN Coordination Number 

DOE Department of Energy 

EXAFS Extended X-ray Absorption Fine Structure 

Ga Gallium 

IACT Institute for Atom-efficient Chemical Transformation (Argonne-led Energy Research Frontier Center) 

He Helium 

IACT Institute for Atom-efficient Chemical Transformation (Argonne-led Energy Research Frontier Center) 

IDL Indirect Liquefaction 

MeOH Methanol (CH3OH) 

MFSP Minimum Fuel Selling Price 

MTG ExxonMobil’s Methanol-to-Gasoline process 

MTO ExxonMobil’s Methanol-to-Olefin process 

MW Molecular weight 

NREL National Renewable Energy Laboratory 

O Oxygen 

P Pressure 

PMP Project Management Plan 

S Sulfur 

SOT State of Technology 

T Temperature 

TEA Techno-Economic Analysis - includes mechanical process design, cost and revenue estimates, and sensitivity analysis 

XANES X-ray Absorption Near-Edge Spectroscopy 



Future Work – Pilot Scale Testing 
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