

HYGEAR

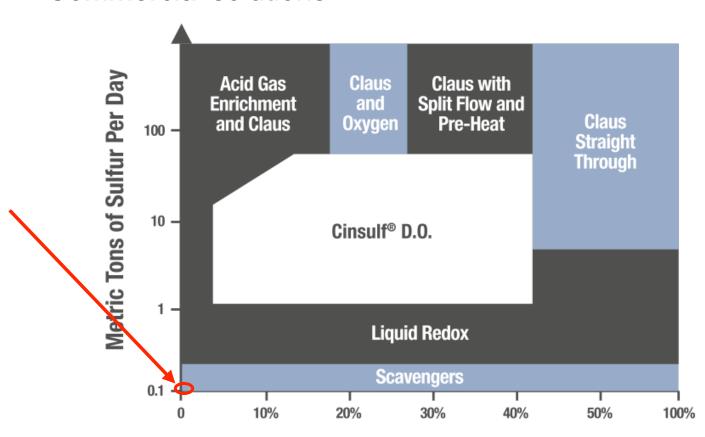
GAS CLEANING EUROPE

ELLART DE WIT

HYGEAR

ABOUT HYGEAR

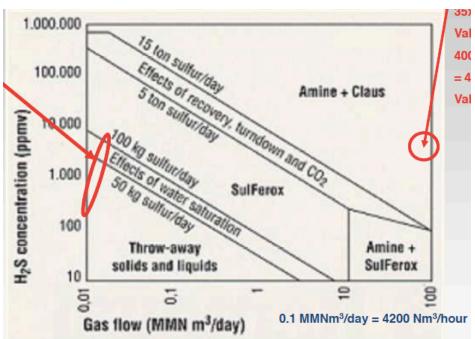
- Established in 2002
 - 65 people
 - Acquired Plug Power Europe in 2009
- Products
 - Hydrogen Generation Systems
 - Biogas Cleaning systems
 - Fuel Cell Systems
- Facilities
 - Catalysis and Adsorbents laboratory
 - 2000 m² System test facilities
 - Rapid prototyping shop
 - Flexible system assembly line


NATURAL GAS CLEANING - SULFUR

- Most sulfur is removed at well!!
- What is in pipeline depends on source:
 - Netherlands: sulfur removed at well
 - Russia: small amounts H₂S & COS
 - North Africa: all sulfur removed (LNG source)
 - North Sea: small amounts of H₂S & COS
 - In all countries: TetraHydroTyofene (THT) added as odorant
 - South Germany and Italy add mercaptans (Tertiarybutylmercaptan)
- Different gas grids!
 - Every country own regulations
 - L-Gas: 81% CH_4 , $CO_2 + N_2$, $C_2 C_3$
 - H-Gas: $\pm 100\%$ CH₄ (plus C₂-C₃)
 - Peak shaving: propane + air

WHERE ARE WE ON THE MAP OF SOLUTIONS?

Commercial solutions



H₂S Fraction in Total Acid Gas

DIFFERENT SOLUTIONS, DIFFERENT SPECS

- Scavengers
 - Remove sulfur down to ppm-range
 - Different solutions for different input amounts etc
- Polishers
 - Remove sulfur down to ppb-level

SOLUTIONS USED IN EUROPE

- Small scale fuel cells: adsorption
 - Active carbon (no COS, large volume)
 - Zeolites (mercaptans, THT)
 - Metal based (H₂S, COS)
 - Mixed beds (sequence is important! COS difficult)

CONCERNS / ISSUES / IMPROVEMENTS NEEDED

- Costs
- Interference by other compounds
 - water, higher hydrocarbons
- Non full use of material
 - Difference actual sulfur content in feed vs feed specifications
 - Sulfur sensing too costly for small units
 - Replace unused material
- Household
 - Major concern is toxicity/flammability of spent cartridges
 - Active carbon / zeolite as solution for households
 - Chemical company is starting service for replacements and logistics
- Industry
 - Ni-based solutions
 - Carcinogenicity of nickel subsulphides

TESTS OF ADSORPTION MATERIALS

- ❖ >20 materials from 7 manufacturers were analyzed
- >10 materials were tested in laboratory reactors
- 3 materials and combinations thereof proved to be acceptable
 - Zeolite: flammable after use, captures THT and Mercaptans
 - Metal-based: non flammable after use, captures Mercaptans, H₂S and COS
 - Ni-based: non flammable after use, high capacity for mercaptans, H₂S and COS, carcinogenic

ALTERNATIVE SOLUTION: HYDRODESULFURIZATION

- Major impact on system design
 - Needs H₂
 - Needs heat 350°C
 - Guard-bed needed during start
- Dis- & Advantages
 - Cost benefits are minor
 - Converts all sulfur-species
 - No difficult waste!

- no sulfur removal during start-up
- water containing reformate not suitable for most catalysts & ZnO
- complex solution (reliability, sensoring)

SIMPLIFY LIFE

- Do not add sulfur....
- Use non-sulfur containing odorant
 - Gasodor®
 - Nitrogen based odorant. (m)ethylacrylate, methylethylpyrazine
- Only used in a few German cities
 - No expectations of wide use
 - High cost of introduction

BIOGAS (DIGESTER GAS) UPGRADING

- Remove CO₂ by
 - Water / amine washing (large plants, 500-1500m3/h)
 - (V)PSA (mid-size, 200-700 m3/h, landfills)
 - Membranes (small size, <200 m3/h)
 - 137 plants in Europe (2011)
- Remove S by
 - One step (<200ppm):</p>
 - active carbon with O₂ enrichment
 - Impregnated active carbon (high costs for waste removal)
 - Two step (>200ppm):
 - 1. Biological reduction / iron sponges
 - 2. Active carbon
 - Siloxanes . Halogens removed by active carbon as well
 - No more new landfills in Europe. Focus thus on digesters

PURIFICATION OF HYDROGEN STREAMS

- Traditional: bottled gas
 - PSA
- Fuel cell use
 - O₂: catalytic deoxidizer
 - CI/chlorate: alkali water scrubbing

GASIFIER GAS CLEAN UP

- No mature market in Europe
- Technologies available for most contaminants
- A lot of research on tar removal
 - Today too costly
 - OLGA system is state of the art
- Quenching of gas to prevent tar formation results in low efficiencies
- Promising technologies for hot cleaning
 - Plasma cleaning
 - Catalytic candles

THANK YOU

HyGear Westervoortsedijk 73 6827 AV Arnhem www.hygear.nl

ENGINEERING FOR SUSTAINABLE GROWTH

