EERE Building America Webinar

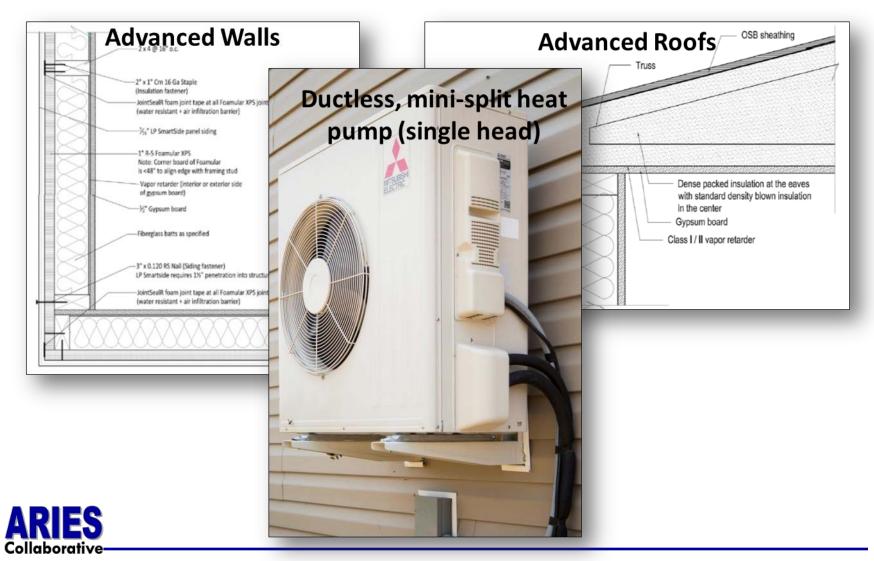
April 27, 2016

Advances in Manufactured Home Energy Efficient Design

Advanced Residential Integrated Energy Solutions

"Integrated Design" Concept

- Goal: Reduce space conditioning energy use by at least 50% while holding the line on affordability
- Components of the strategy as an *optimized* system:
 - Ultra-efficient thermal envelope
 - Low capacity, highly efficient mechanical system
 - Innovative distribution system
 - Affordable and effective ventilation



ID Performance in Hot, Humid Climates

- Design, build, commission prototype
- ✓ Collect data, assess performance
- ✓ Dissect, diagnose, critique, strategize
- ✓ Refine design

Core Technologies

Advanced Wall Construction

Advanced Roof Construction

Advanced Roof Construction

Window Installation

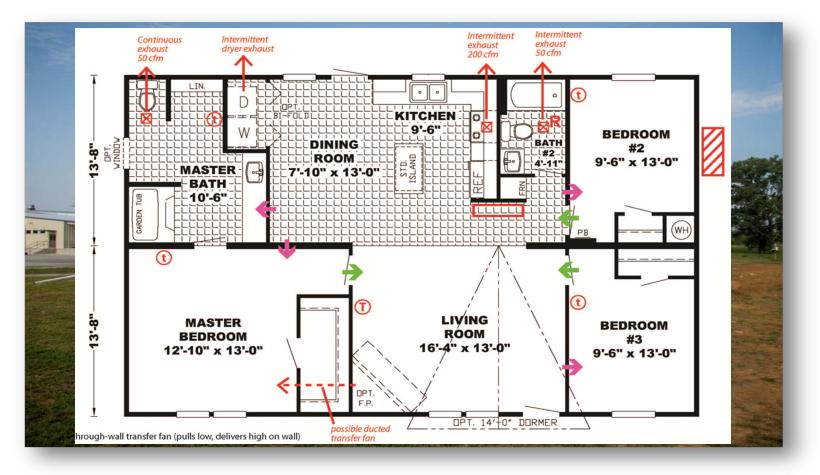
Ductless, Mini-split Heat Pump

- NO DUCTS, no site work
- Transfer fans for distribution
- Cost competitive
- High efficiency
- Factory installed
- Interior space saving (no furnace)

Other Home Features

- ENERGY STAR appliances
- Low-e, argon filled windows
- Quiet transfer fan distribution
- Dedicated fresh air ventilation
- 25% more airtight
- Reduced thermal bridging

Technology Refinement



Research Questions

- **Program design**. Is ZERH suitable for manufactured homes? What changes to ZERH would better recognize the unique features of factory building?
- Use of MSHPs. Can point-source space conditioning achieve comfort targets?
- **Costs**. What's the incremental cost of achieving ZERH? Is it cost-effective?
- **MSHP performance**. How does MSHP perform in service?

Russellville Lab Houses

Site

House Specifications

Items	House A	House B	House C	
Floor	R-14 Fiberglass blanket	R-28 Fiberglass blanket	R-28 Fiberglass blanket	
Wall	R-12 R-11 (Fiberglass batts)+ R- 1 (¼-in ThermalStar board)	R-14 R-13 (Fiberglass batts)+ R-1 (¼-in ThermalStar board)	R-18 R-13 (Fiberglass batts) + R-5 (1-in. Extruded polystyrene)	
Windows	U: 0.47, SHGC: 0.73 Single pane, metal frame	U:0.31, SHGC: 0.33 Double pane, vinyl frame, low-emissivity, argon filled	U: 0.30, SHGC: 0.23 Double pane, vinyl frame low-emissivity, argon filled	
Ceiling	R-22 Blown fiberglass	R-33 Blown fiberglass	R-45 Blown fiberglass Dense-packed at eaves	
Air Sealing	Foaming ceiling penetrations, caulking under bottom plates and between top plates and ceiling, marriage line gasket			
Mechanical Ventilation	POS Fresh air duct to air handler No mechanical damper	POS Fresh air duct to air handler No mechanical damper	Exhaust Fan 45 cfm	
Space- Conditioning Distribution	Ducts Metal in-floor ducts sealed with mastic; R-8 crossover duct between sections	Ducts Metal in-floor ducts sealed with mastic; R-8 crossover duct between sections	Transfer Fans	

House Specifications

	House A	House B	House C	
Cooling Equipment	Intertherm Air conditioner Capacity: 23.4 kBtuh EER: 11.0, SEER: 13.0	Intertherm Air source heat pump Cooling capacity: 18 kBtuh EER:11.0, EER: 13.0	Mitsubishi Variable-speed mini-split heat pump with outdoor unit assisted by	
Heating Equipment	NORDYNE Electric furnace Capacity: 35 kBtuh	Heating capacity (47°F): 20.2 kBtuh HSPF: 8.0	temperature-controlled heaters when temperature falls below 69°F in the bedrooms	
Air Handling Unit	NORDYNE Electric furnace, E3EB- 010H, downflow set to low speed. Resistance heating capacity: 10 kW Air handling unit wattage (heating elements + blower) :10.4 kW	NORDYNE Electric furnace, E3EB-010H, downflow set to low speed. Resistance heat capacity: 10 kW Air handling unit wattage (heating elements + blower) : 10.4 kW	Outdoor unit: MUZ- FH15NA Indoor unit: MSZ-FH15NA Cooling capacity: 15 kBtuh EER: 12.5 SEER: 22.0 Heating capacity at 47°F: 18 kBtuh; HSPF: 12.0 Heating capacity at 17°F: 11 kBtuh	

House C Airflows

Commissioning Results

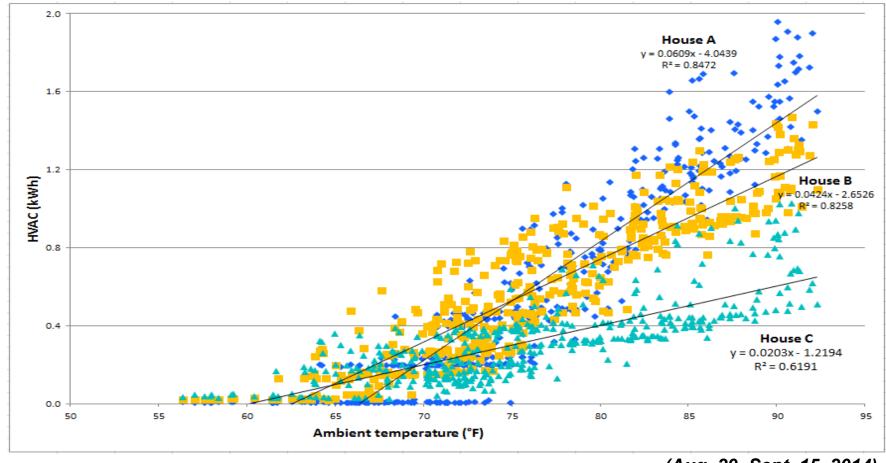
Test	Method	House A	House B	House C
Enclosure Leakage	Multipoint depressurization test	4.7 ACH50	4.6 ACH50	3.8 ACH50
Duct Leakage	Duct blower depressurization test	54 cfm25 to outside	~10 cfm25 to outside	N/A
Ventilation Rate	Powered flow hood	44 intermittent	32 intermittent	45 continuous
Air Handling Unit Air Flow	Pressure equalization	980 cfm	1,000 cfm	Variable

18 Months of Monitoring

Measurements

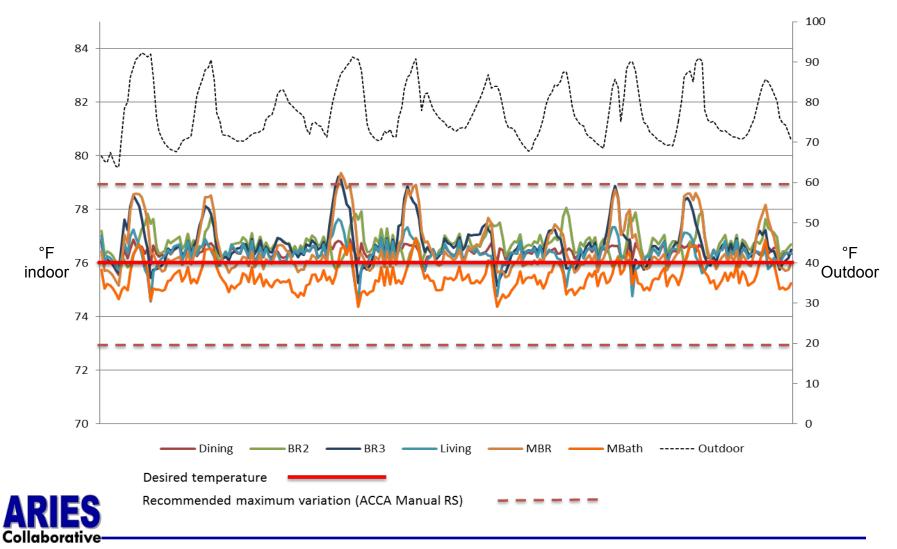
One-minute data uploaded daily:

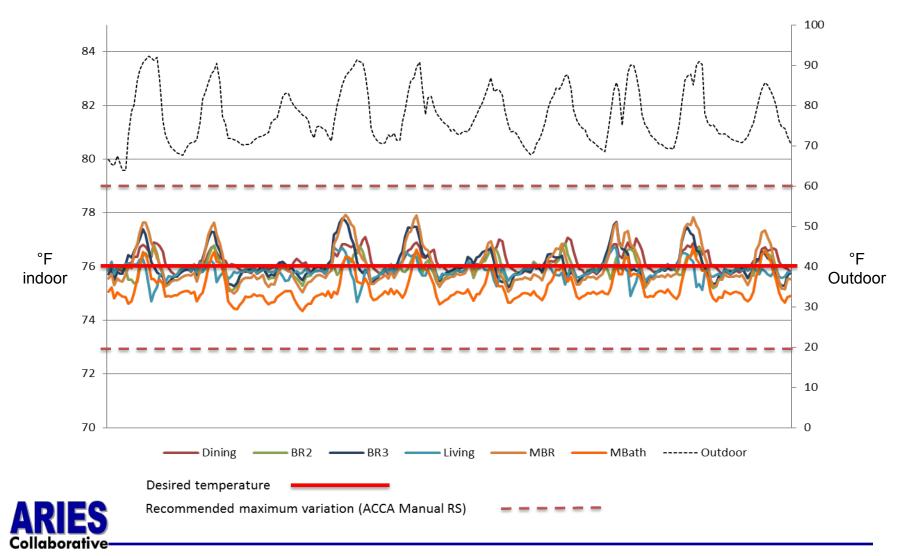
- Air temperature
- Relative humidity
- Condensation
- Power consumption
- Status
- Current
- Solar radiation


Results - Cooling

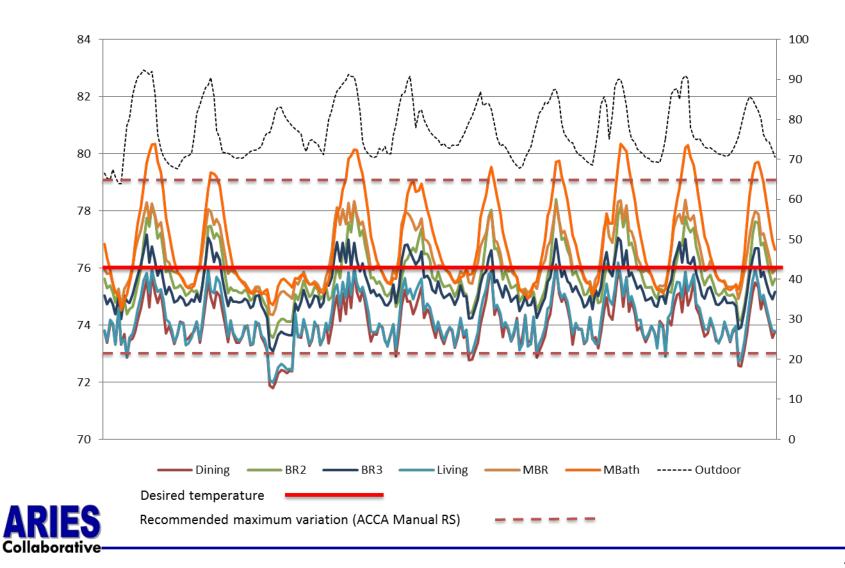
	House A (HUD-Code)	House B (Energy Star)	House C (ZERH)
Total Cooling (avg. kWh per day)	15.0	14.5	7.4
Average Indoor Temp (F)	76.4	75.9	75.4
Cooling Set Point (F)	76	76	73-75
Average Relative Humidity (%)	46%	48%	59%
Air Handler Fan Runtime	31%	37%	N/A
Ventilation - Effective Continuous Rate (cfm)	14	12	45

Configuration: Interior doors open Window blinds at 50% Data Aug 29-Sept 7, 2014, Avg. OAT. 77.3°F


Cooling Power Relative to Outdoor Temperature

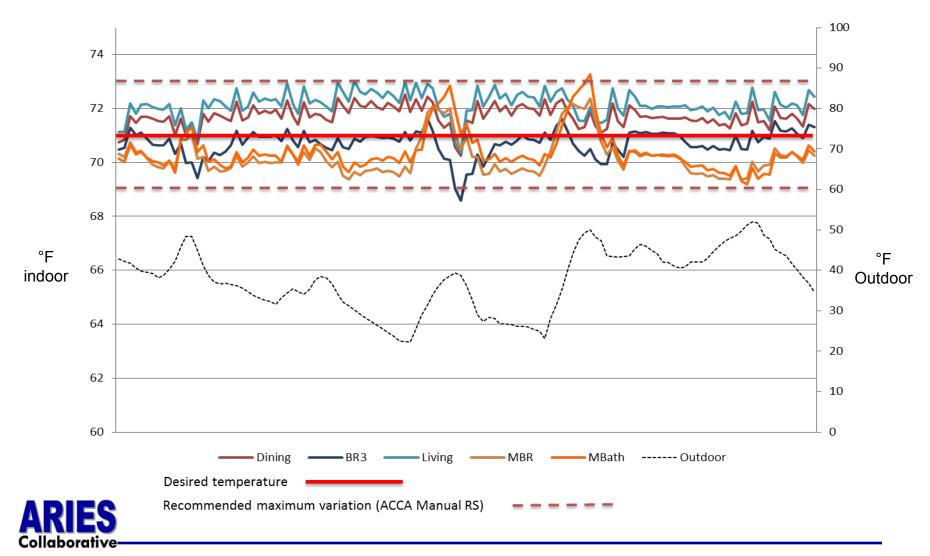


(Aug. 29-Sept. 15, 2014)

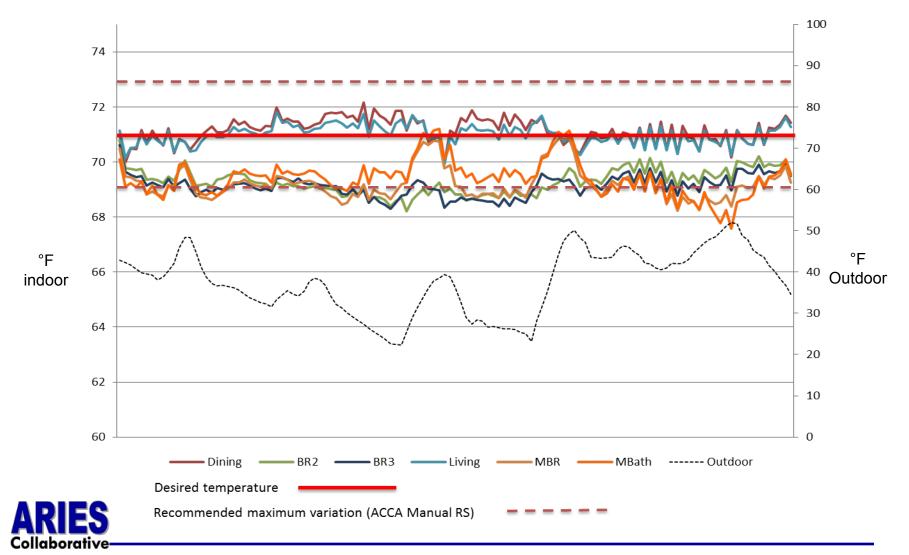

House A - Cooling

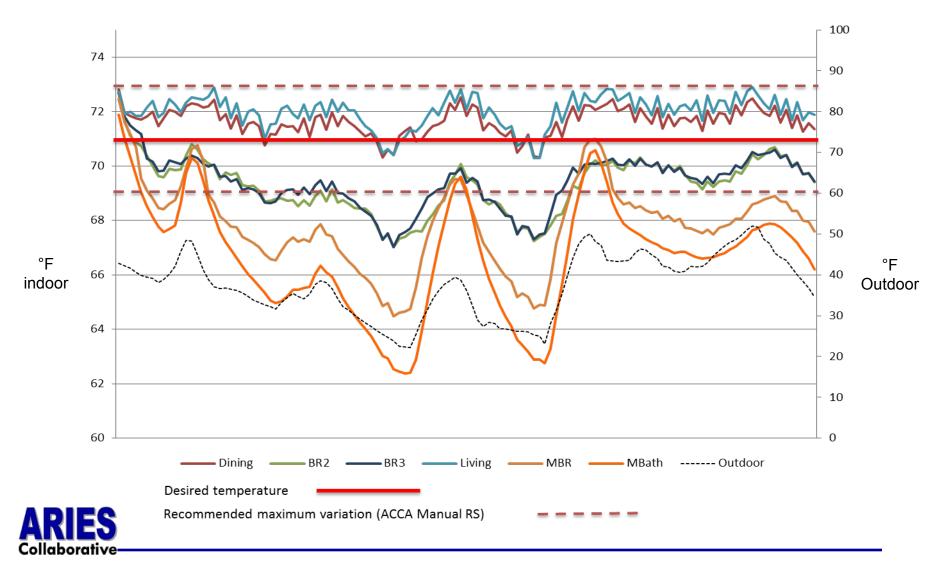
House B - Cooling

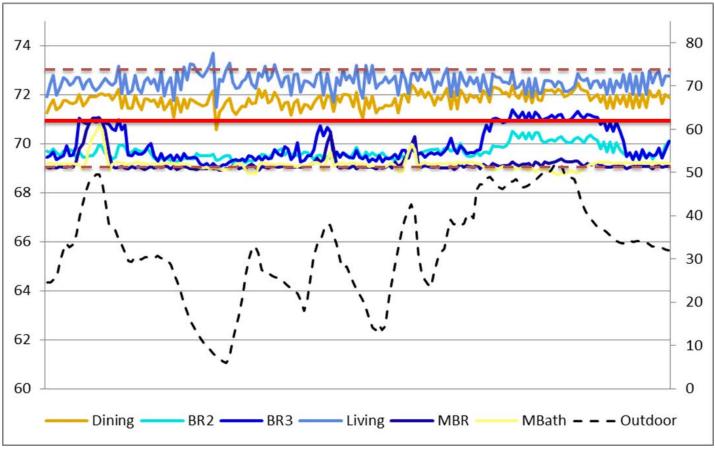
House C - Cooling


Results - Heating

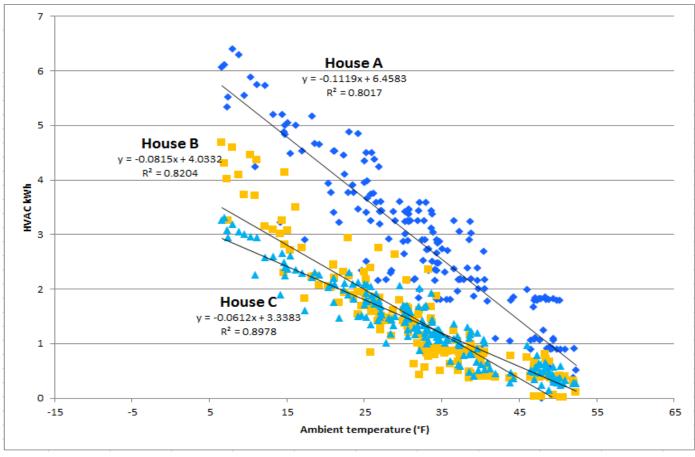
	House A (HUD-Code)	House B (Energy Star)	House C (ZERH)
Total Heating (avg. kWh per day)	48.7	18.1	16.6
Average Indoor Temp (F)	71.3	69.9	69.5
Heating Desired Temperature (F)	71	71	71
Average Relative Humidity (%)	28%	30%	33%
Air Handler Fan Runtime	22%	33%	N/A
Ventilation - Effective Continuous Rate (cfm)	10	11	45


Configuration: Interior doors open. Window blinds at 50% Data Nov 12-17, 2014 Avg. OAT 41.3°F

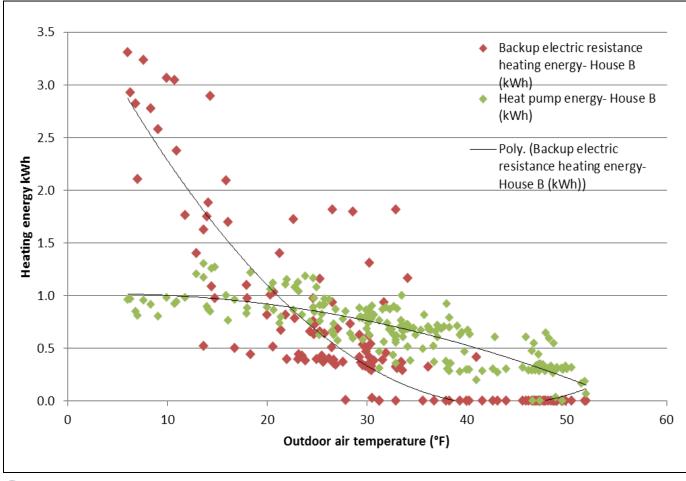

House A - Heating

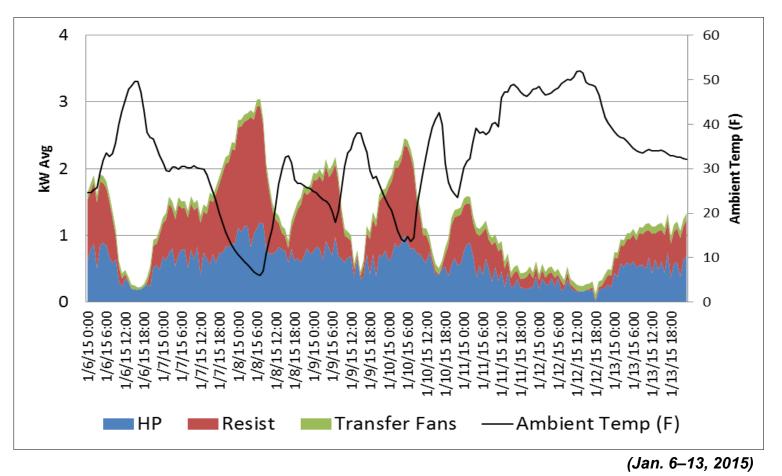

House B - Heating

House C - Heating


House C with Resistance Heat in Bedrooms

(Jan. 6–13, 2015)


Heating Energy Compared to Outdoor Temperature


(Jan. 6–13, 2015)

House B Backup Electric Resistance Heating Energy

House C Heat Pump, Transfer Fan, and Resistance Heating Energy

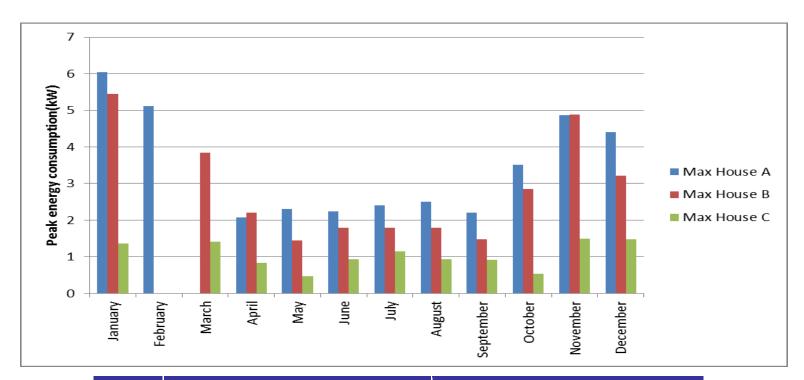
Energy Consumption

- House B used slightly less energy than House A for **cooling**.
- House C used half the cooling energy of Houses A and B.
- House B and House C consumed about the same amount of **heating** energy.
- Compared with B and C, House A used about three times the **heating** energy.

Effective Ventilation Rates

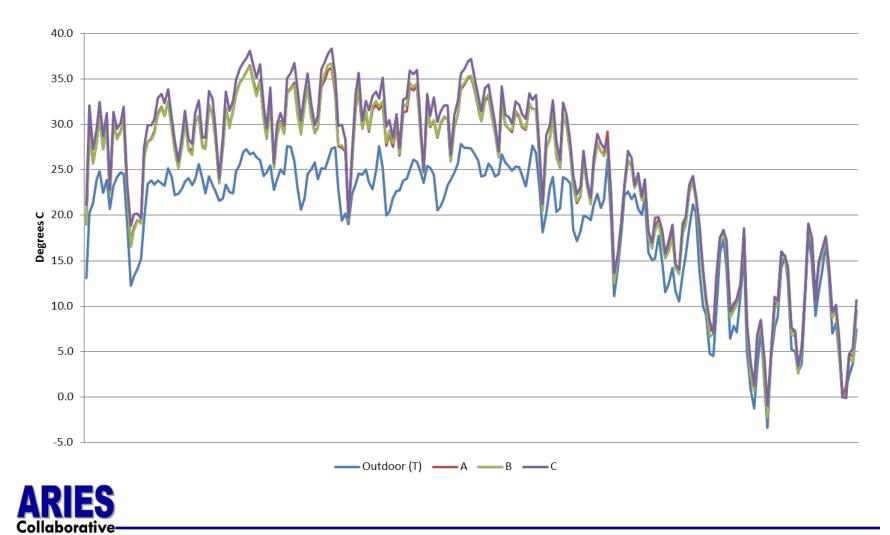
	Whole-House Ventilation Flow (cfm)			
House	Measured Code Required			
Α	22			
В	13	50		
С	45			

The required whole-house ventilation rate should be 0.035 ft^3 per square foot of the conditioned space or a minimum of 50 cfm. Conditioned area = 1,210 ft².


Wall Cavity Conditions

House	Condition	Temp. (°F)	Humidity (%)	Wood Moisture Content (%)	Dew Point (°F)
В	Maximum	91.6	71.0	14.2	67.2
	Minimum	27.0	38.2	7.0	7.9
	Avg.	64.8	54.7	9.5	48.0
С	Maximum	86.2	77.4	14.6	73.3
	Minimum	32.5	40.0	7.0	15.9
	Avg.	65.2	62.2	11.6	52.1

(April 2014–April 2015)


Monthly Peak Electric Demand

House	Avg. Monthly Peak Demand During Peak Hours	Avg. Demand Reduction Compared to House A
Α	3.1	N/A
В	2.6	18%
С	1.0	69%

Attic Temperatures

Heating System COPs

- The COP of the heating system was calculated for all three houses using a co-heat method.
- For House B and House C, the COP of the heat pumps was also measured using airflow measurements.

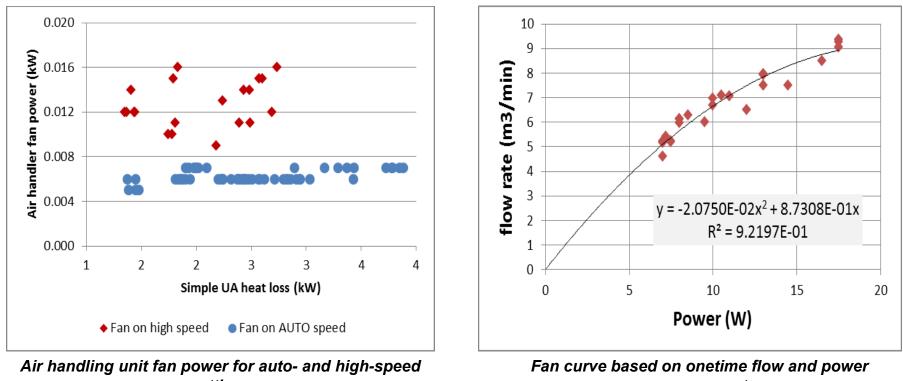
Measured Heating COPs

	House / Equipment Type		
	A NORDYNE Electric Furnace	B Intertherm Heat Pump	C Mitsubishi
UA (Incl. Infiltration) Btu/h/°F	313	245	209
COP (Co-heat method)	1.10	2.50	2.49
COP (Co-heat method) (without ventilation adjustment)	1.00	2.26	1.63
COP (air-side method)	Not measured	1.37	1.39
Expected COP, Based on manufacturer data	1 (Lower due to duct leakage)	3.2 (Lower due to duct leakage)	4.8

COP Measurements

Air-side method may be less reliable than the co-heat method due to:

- Non-uniformity of supply air measurements.
- Room-to-room temperature differences
- Higher convective airflow due to air handling unit operation than existed during the co-heat tests
- Variations from estimated ventilation rates


COPs calculated by the co-heat method are taken to be closer to actual performance.

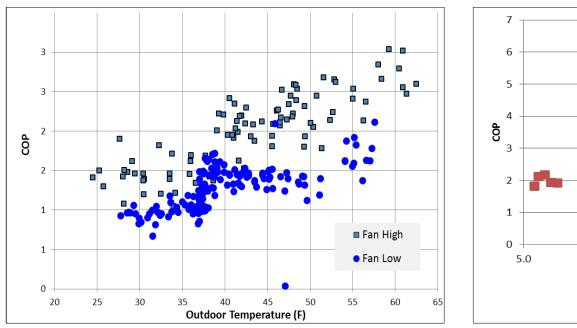
House B refrigerant coil in heating mode showing non-uniform temperatures

Auto Setting Resulted in Low Fan Speed

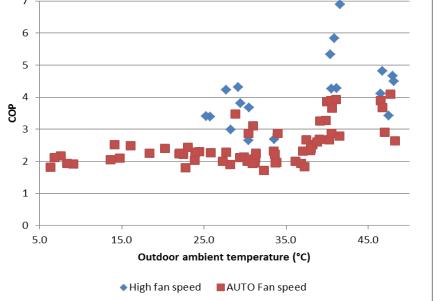
settings

measurements

Mini-Split Heat Pump COPs at High and Low Fan Speeds


Test Type	COP / Temp.	High Fan	Auto Fan (Low speed)
Co-Heat Method	COP	4.11	2.49
	Avg. Ambient Temp. (°F)	36.8	30.7
Air-Side Method	COP	2.25	1.39
	Avg. Ambient Temp. (°F)	43.2	42.1

The average COPs calculated from the air-side and co-heat (with ventilation adjustment) methods while the fan was set on high speed compared to the auto-speed COPs.


COP as Function of Ambient Temperature

Comparison of mini-split COP with low (auto) and high fan speeds

Air-side measurement method

Co-heat measurement method

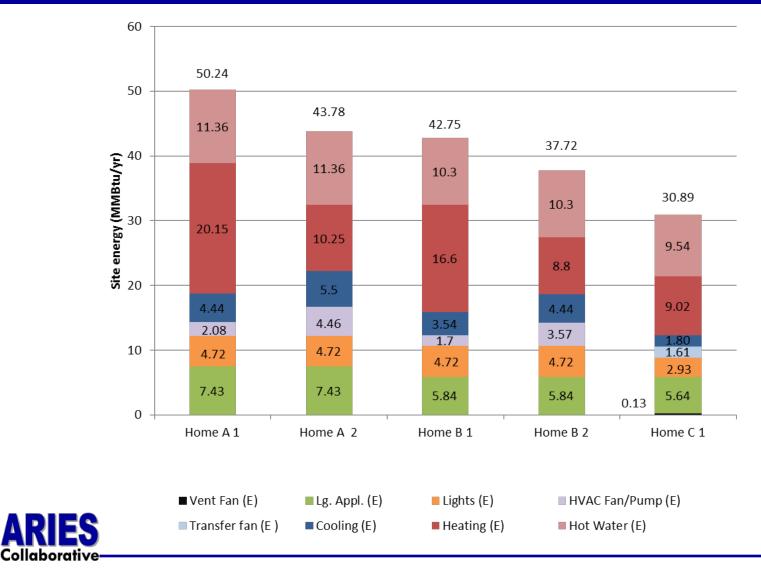
Stratification Impact on COP

- High return temperatures may reduce COP
- January 6–13 average living room temperature:

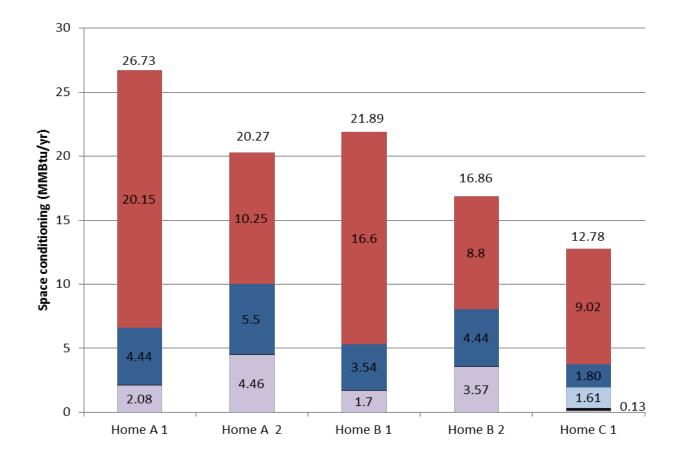
Height	Temperature (°F)
Entering heat pump	74.8
84 in. above the floor	75.4
60 in. above floor	70.2
12 in. above the floor	68.9

Extrapolating Energy Use

- **Objective**: Based on measured data, estimate space conditioning energy use in a range of Southeast climates.
- **Method**: Simulation with field-data-calibrated energy models using BEopt with Energy Plus engine.



3 Locations, 5 Models


Model	Thermal Envelope	Space Conditioning	Data Source
A1	HUD code	Electric resistance furnace; Split system AC ^a	Measured
A2	HUD code	Heat pump furnace; Split system AC	Simulated
B1	ENERGY STAR	Electric resistance furnace; split system AC	Simulated
B2	ENERGY STAR	Heat pump furnace; split system AC	Measured
С	ZERH (IECC 2012)	Ductless mini-split heat pump	Measured

Modeling Results – Knoxville Whole House Site Energy

Modeling Results – Knoxville Space Conditioning Site Energy

Energy Savings and Payback: Knoxville, TN

Compared to House A

House	Annual Utility Cost	Savings	Incr. Retail Cost	Payback (yr)
Α	\$1,656	N/A	N/A	N/A
В	\$1,263	\$393	\$2,268	5.8
С	\$1,055	\$601	\$5,843	9.7

House C compared to House B

Savings	Incr. Retail Cost	Payback (yr)
\$208	\$3,575	17.2

Research Questions

- **Program design**. Is ZERH suitable for manufactured homes? What changes to ZERH would better recognize the unique features of factory building?
- Use of MSHPs. Can point-source space conditioning achieve comfort targets?
- **Costs**. What's the incremental cost of ZERH? Is it cost-effective?
- **MSHP performance**. How does the MSHP perform in service?

Responses to Research Questions

- **1. Program design.** *Is ZERH suitable for manufactured homes? What changes to ZERH would better recognize the unique features of factory building?*
 - House C was built in compliance with the HUD code and DOE ZERH criteria.
 - The use of a ductless heat pump simplified the compliance with ENERGY STAR version 3 HVAC requirements.
 - Thermal envelope, ventilation, and indoor air quality requirements were not a barrier, although they did add costs.
 - Existing ZERH criteria did not present a barrier for manufactured homes using this space conditioning strategy.

Responses to Research Questions

- **2. Use of MSHPs**. Can point-source space conditioning achieve comfort targets?
 - <u>The ZERH performed reasonably well in cooling</u>. There was some temperature fluctuation from one room to another but only the master bathroom exceeded the upper bounds of the ACCA temperature range (with the interior doors <u>closed</u>).
 - In heating, the bedrooms did not maintain acceptable <u>temperature</u>. Resistance heaters were needed mainly when the ambient temperature was below freezing.

More Comfort Related Findings

- Open doors may obviate the need for transfer fans
- Closed doors are more consequential during the heating season
- Window shading (closed blinds) is an important cooling energy savings and comfort strategy
- Convective heat transfer through open doors was approximately 140 to 281 cfm
- Transfer fans are of limited value when doors are open
- Transfer fan low-high configuration not beneficial

Responses to Research Questions

3. Costs. *What's the incremental cost of achieving ZERH? Is it cost-effective?*

House C Compared to A / B	Energy Measure Manufacturer Cost Premium	Homeowner Payback Based on Retail Costs
House A	\$2,060	8.8 years
House B	\$1,166	17.5 years
	Deced on estimat	d costs at high production valumes

Based on estimated costs at high production volumes

- House C had 50% space conditioning savings compared to House A
- Strategies are available for reducing backup heat and increasing mini-split COPs

Equipment improvements have a larger, relative impact
RIES on energy use than envelope improvements

Research Questions and Responses

- **4. MSHP performance.** *How did the MSHP perform in service?*
 - The COP of both the conventional split-system heat pump and the ductless mini-split were approximately 2.5.
 - For the mini-split, this is well below the expectation based on manufacturer data.
 - When the mini-split was run on its high-speed, its COP increased to 4.11. That is, low airflow lowers operating efficiency.

Other Findings of Note: Moisture

- Wood moisture content. Slightly elevated in House C but within safe limits. Likely due to exterior foam insulation reducing vapor permeability. Condensation risk mitigated by 5.5°F higher dew point at condensation surface.
- **Relative humidity.** RH within acceptable limits (latent loads not simulated). Short-term humidification testing revealed little impact on RH, indicating that equipment had sufficient capacity to handle the latent loads during hot weather.

Other Findings of Note: Peak Loads

- House B averaged 18% lower peak than House A
- House C averaged 69% lower peak than House A
- Some House B winter peaks similar to House A indicating that House B's peak occurred electric resistance is the primary heating source

Full Report

- **Field Evaluation of Advances in Energy-Efficiency Practices for Manufactured Homes,** E. Levy, J. Dentz, E. Ansanelli, G. Barker, P. Rath, and D. Dadia (*ARIES Collaborative*)
- http://apps1.eere.energy.gov/buildings/publications/p dfs/building_america/65436.pdf

Awards and National Recognition

Building America Top Innovation Award 2014

ZERH Housing Innovation Award 2014

ENERGY Energy Efficiency & DOE ZERO ENERGY READY HOMETH

Southern

Energy Homes First DOE Zero Energy Ready Manufactured Home Russellville AI

BUILDER PROFILE Southern Bregg Homes, hc. Ca division (Chylon Homes) David Brewer divid/Drewer(Bickytonhomes.com 205-489-5435 www.ckytonhomes.com Reter: The Levy Partnership, hc. Jordan Dantz, joint/2019/03-primeship.com

FEATURED HOME/DEVELOPMENT: Project Data: - Name: First DOE Zero Energy Beach

Project Data: • Name: First DO E Zero Energy Ready Manufactured Home • Location: Russellville, AL • Layout: 3 bedrooms, 2 baths, 1 floor

Conditioned Space: 1232 ft*
Climate Zone: IEOC 3 A, mixed -humid
Completion: May 2014
Category: Affordable

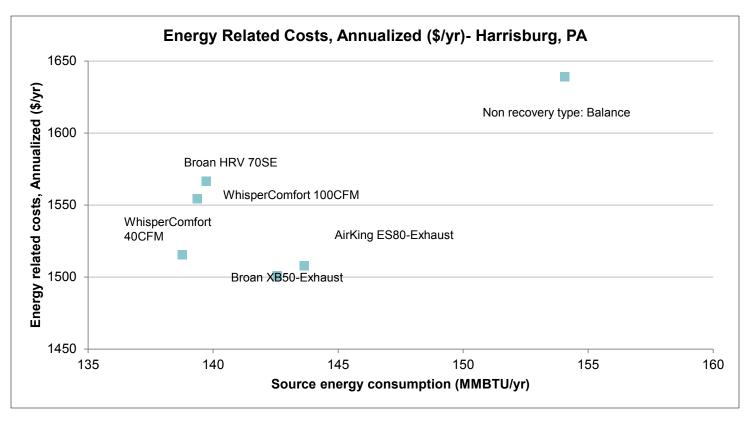
Performance Data: • HERS Index: without PV 57 • Projected Annual Utility Costs: without PV \$759 • Projected Annual Energy Cost Savings

 Projected Janual Energy Cost Savings (compared to a home built to the HUD Codb): without PV \$372
Builder's Added Cost Over HUD Code (MHCSS): \$1,87
Annual Energy Savings: without PV 4,658 LVM The country's first US Department of Darg-settified Zroc Earcy Ready manufacturth Home is up and running in Roundhille, Alabama. The manufacturth Home is built port through its parts along side of a standard to-code marifactured home and an INERCY STAR manufactured home. The manufactured home, built by Clayton Home's Southern Intercy Homes studding, has an imperietive studie of energy-setus, water-aving, lightesh features that any home would be proud of "The DOR Zero Interp Ready home is a potential gunce changer for the factory building industry's aid fordan Dents, a building scientifs for The Levy Patterniky, a mearch patter in the DOR Building America program who is collaborating with Cayton Homes and the National Renewable Intergr. Laboratory to do 15 months of side-by-side performance testing on the three homes.

ZERC

Terting begas May 2014 and perliminary cooling-reason results are already showing the DOE Zero Energy Ready Hore is a strong leader in this energy swings rate, using half the space conditioning energy of a manifactuard hore built to the U.S. Department of Housing and Urban Development's Manifactured Hone Construction and Safty Standard for computy hown as the HUD code), which is the builting standard for all U.S. manufactured Housing. The other manufactured house, which was built to the HUD code, bower for the MUD code of the Standard for all U.S. manufactured housing. The other manufactured hone, which was built to the HERGY STAR. critter is for manufactured homes has about a 1% savings over the HUD Code home.

The DOE Zero Energy Ready Hone meters all of the requirements that site-built hones must need to qualify for this high-performance honed habiling program. The hone is built to neet all of the air sublag and construction quality requirements of DENERGY STARE Certified Honese Winciss 3.0. Its increte the indoor air quality and water aving measures of the U.S. Environmental Potention Agreency's Indoor air[U.S. and WaterBeerg Boggsram. The DOE


Design Changes

- Ventilation system
- Distribution system
- Thermal enclosure

Ventilation System Analysis

• BEopt analysis of 6 options in 4 northern climates

Ventilation System Conclusions

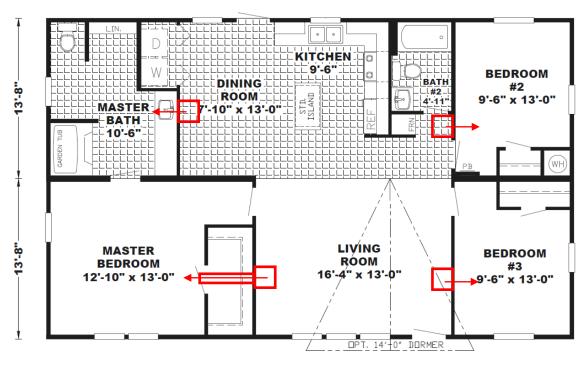
- Panasonic WhisperComfort ERV 40CFM has lowest source energy consumption, but flow rate too low
- Source energy for all options similar savings potential small
- Manufactured homes typically have exhaust fans which can be repurposed for whole house ventilation and thus are suitable from an ease of construction standpoint
- Low first cost makes exhaust fans attractive to manufacturers

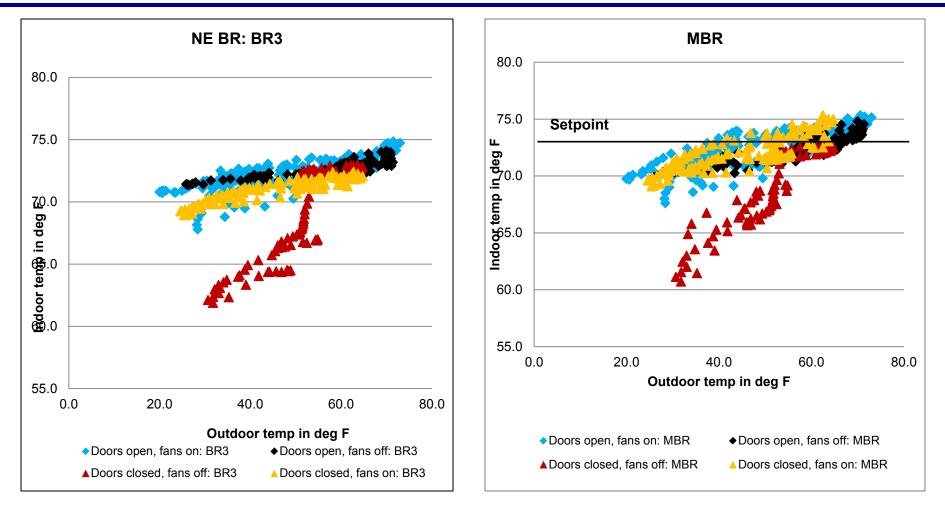
Distribution System Redesign

Goals:

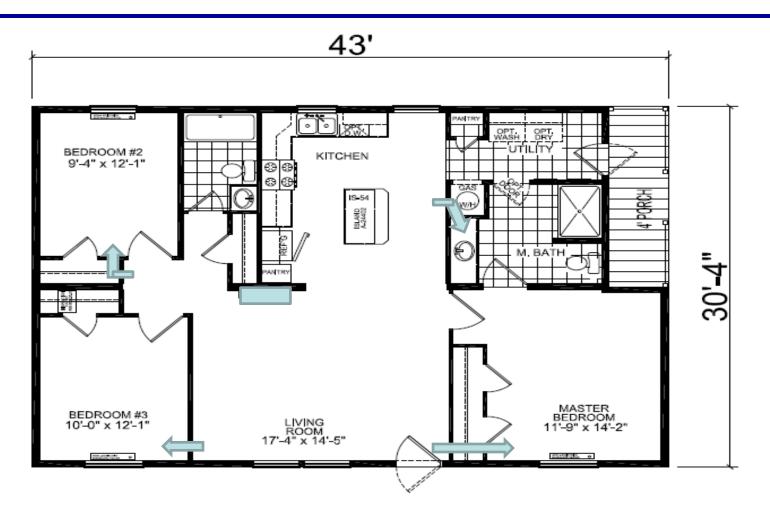
- More airflow
- Quieter

Strategy


- Straight through wall
- Different fan


New Distribution System Testing

Monitoring Results with New Fans


About as effective as an open door

Thermal Enclosure Revisions

- R-4 windows
- 2x6 walls
- More floor insulation
- Tighter envelope

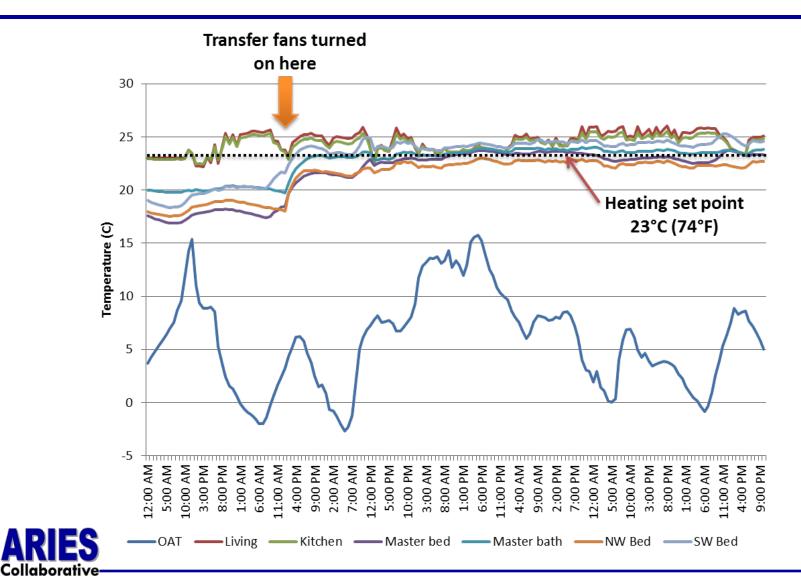
New Cold Climate ID House

Production at Champion Homes, Claysburg, PA

Collaborative

Installation in Eatontown, NJ

- Six months unoccupied monitoring and testing
- One year occupied monitoring



Ribbon Cutting

Initial Testing Data

Next Steps

- Building America
 - Implement internal gains
 - Continue monitoring
 - Occupancy
 - Design two homes with Habitat using same principles
- NYSERDA
 - Design and build two manufactured ZERH for New York State

