Thermoelectric Clothes Dryer
2016 Building Technologies Office Peer Review

e alesie b Ul aN ) Energy Efficiency & Kyle Gluesenkamp, gluesenkampk@ornl.gov
EN ERGY Renewable Energy Oak Ridge National Laboratory



Project Summary

Timeline: Key Partners:
Start date: October 1, 2014

Planned end date: September 30, 2016
Key Milestones
1. Go/No-Go Milestone 1.4: Demonstrate target EF>6

based on combination of modeling and ER | \
prototype test results. Met September 30, 2015.
2. Milestone 4.1: Develop water resistant TE

modules. Met September 30, 2015.

Sheetak, Inc. Industry Partner

Budget: _
Project Outcome:

Total Project $ to Date: This project applies innovative solid state
* DOE: $850k heat pump technology to the dryer sector
e Cost Share: S95k to meet the 2020 MYPP target of EF>6 (EF
of 6.2 expected). This leads to primary
. . energy savings of 40% and can position the
Total Project $: US as the leader in the clothes drying

* DOE: 5850k industry, resulting in job and innovation
* Cost Share: S95k growth.
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Purpose and Objectives

Problem Statement:

Barriers: First cost, long dry time, and perceived risk

TE-based approach: Lower first cost than vapor compression; capable of fast dry times;
addresses perceived risk by lacking a “sealed system” or any additional moving
parts, leading to higher reliability and consumer desirability

Target Market and Audience:

- 638 TBtu/yr: residential electric clothes dryers (2020)
- 5.6 million unit shipments (2008)

- 67.2 million US households (60%) have one

Impact of Project:

- During project: Laboratory prototype will prove performance (EF and dry time), to
save 40% primary energy (254 TBtu/yr) in electric clothes drying

- Intermediate term: By showing a path to a low-cost approach, product
commercialization based on prototype is possible.

- Eventually: Position the US as leader in dryer industry, creating jobs and spurring
further innovation, and saving TBtu/yr.
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Approach — Background

Electric Resistance
Heater

State of the art: Conventional dryers
— EF/Dry time: 3.73, 15-30 minutes Alr
— Retail: ~$350

State of the art: Vapor compression dryers @ Air
— EF/dry time: 4.5 -8.9; 38 — 72 minutes
— Products introduced to US market 2015 A -

Refrigerant
— Retail: ~$1,600 efrigeran

e This project: Drum-integrated thermoelectric

Exhaust

TE modules

— EF 6.2 obtained I—) Drum —‘
— Dry time longer than vapor compression - Air
This project: Air-based thermoelectric

— EF 6.2 expected _
Air

— Target dry time <30 minutes
@ TE modules

— Target retail
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Approach

Approach:

- Drum-integrated prototype with drum surface heated by electric resistance (ER) to simulate
thermoelectric heat

- TE module development: moisture resistance, low cost
- TE dryer prototype fabrication, development and evaluation

Key Issues:

- Drum-integrated approach showed promising efficiency (based on modeling and projected
EF) but longer than desired dry time.

- Modeling of air-based TE prototype showed target EF with shorter dry time. Design of
prototype was adapted accordingly.

Distinctive Characteristics: High-performance ventless design is achieved at low cost through
unique utilization of:

* Novel high volume manufacturing of TE technologies reduce cost of thermoelectric elements

— Novel spark plasma sintered TE materials with superior mechanical properties, allowing
less material be used

— Novel polymer substrate material eliminates use of expensive ceramics

* Leveraging world-class modeling capabilities, a cost-conscious design optimization of
controls, architecture, and psychrometric system design leads to lower cost.

U.S. DEPARTMENT OF Energy Efﬁciency &
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Approach

e Lower cost than vapor compression

* The traditionally inferior efficiency of thermoelectrics is overcome
by taking advantage of inherent scalability modularity of TEs
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Heat Transfer in Vapor Compression Dryer

Drum VC evaporator VC condenser
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Cumulative heat transfer

 The vapor compression cycle suffers from large efficiency penalty:
effective temperature lift is much greater than the fundamental lift

— Heat added at temperature above maximum air dry bulb
temperature
— Heat removed at temperature below minimum air dewpoint
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Heat Transfer in Drum Integrated Dryer

Drum interior Drum exterior
A A
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( TE cold junction

Cumulative heat transfer

» Effective temperature lift is lower, since heat pumping is
accomplished isothermally and closer to the air dewpoint

* However, limited surface area is available for heat transfer

— Compared to vacuum dryer approach, heat transfer coefficient
is higher (air convection can be used)
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Heat Transfer in Air-based Thermoelectric Dryer

TE modules

* Air-based design: inherent modularity of TEs
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the gap in efficiency between VC and TE
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Progress and Accomplishments

Accomplishments:

In Year 1:

 Demonstrated drum-integrated target EF>6 (combined modeling/experimental)
* Designed dryer for thermoelectric integration

In Year 2, Q1 and Q2:

e Fabricated dryer with integrated thermoelectrics

 Obtained preliminary test data on prototype

Market Impact: In discussions with appliance commercialization partner. Success of
approach could lead to cost effective applications in water heating and other HVAC&R.

Awards/Recognition: None yet.

Lessons Learned:

* Heat transfer limitations result in longer dry time with direct-contact (conduction)
heat exchange via the drum surface, limiting the application of this concept.

* High ZT figure of merit TEs are not necessary to achieve dramatic savings over
electric resistance dryers

* Blower power matters; selection and optimization of heat sink geometry is critical

U.S. DEPARTMENT OF Energy Efficiency &
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Drum-integrated Prototype Design/Fabrication

Sealed enclosure

Rotating drum

Condensingfan

coil unit  \_
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Drum-integrated Model and Prototype

Drum-integrated model allowed performance to be inferred from
electric resistance prototype results

EF determined to be 6.4

//'Tamb

Thermoelectric i\/ ...................... ;

element

1 HHS: Hot side encapsulation layer and Heat Sink
2 CES: Cool side encapsulation layer and any Extended Surfaces

T, — hot TE interconnect

T, — hot TE surface

T, — clothes

T, — saturation temperature, inside drum
T — saturation temperature, outside drum
T, — cool TE surface

T, — cool TE interconnect
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Thermoelectric prototype design and fabrication (FY16Q1)
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Thermoelectric prototype: preliminary results (FY16Q1)

 Energy factor* and dry time for various TE control schemes, air flow
rates and duct implementations
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Project Integration and Collaboration

Project Integration: Project partner Sheetak, Inc. is a US manufacturer of
thermoelectric modules. The team is in negotiation with appliance
manufacturers.

Partners, Subcontractors, and Collaborators: Partners: Ayan Guha, Key
Kolle, Uttam Ghoshal from Sheetak, Inc., US-based world leader in
advanced TE solid state converters. They have demonstrated high-
efficiency (HiE) TE devices with a figure of merit (ZT) exceeding 1.5, and
have started volume production of TE heat pumps.

Communications: Abstract accepted at 16th International Refrigeration
and Air Conditioning Conference at Purdue University, July 2016:
“Thermodynamic System Modeling of Thermoelectric Heat Pump Clothes
Dryer”

U.S. DEPARTMENT OF Energy Efficiency &
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Next Steps and Future Plans

Next Steps and Future Plans:

- Improve controls to maximize EF and minimize dry time for current
generation prototype

- ldentify design changes to improve performance and minimize
projected cost of next generation prototype, including heat sink designs

U.S. DEPARTMENT OF Energy Efﬁciency &
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Project Budget

Project Budget: S850k federal + S95k cost share

Variances: None
Cost to Date: $733k federal
Additional Funding: None

Budget History

FY 2015 (first year) FY 2016 FY 2017
(past) (current) (planned)
DOE Cost-share DOE Cost-share DOE Cost-share
S425k S47.5k S425k S47.5k SO SO
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Project Plan and Schedule

FY15 FY16
Q1 Q2Q3 Q4|Q1 Q2 Q3 Q4

1 ER Prototype :
1.1  Drum-integrated modeling i
1.2  Design ER prototype E
1.3  Build ER prototype i
1.4  Evaluate ER prototype ’ i

2 TE development E
2.1 Water resistant TEs i
2.2 Encapsulation method >i

O |
8!

3 T2M :
3.1  Market strategy/comm. plan E
3.2 Identify partners/manuf i

4 TE Prototype é
4.1 Design for TE integration :
4.2  Design TE controls E
4.3  Build TE prototype E
4.4  EF>6 for TE prototype E

5 TE module development i
5.1 Demonstrate TE modules .
5.2 Advanced TE modeling '

Legend:
’ Go/No-go: complete
’ Go/No-go: pending
complete
in progress
pending
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