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The Z facility combines the MJ-class Z pulsed-power 
accelerator with the TW-class Z Beamlet Laser (ZBL) 

Up to 22 MJ stored 
15% coupling to load 

1–3 MJ delivered to load 

10,000 ft2 

26 MA in 100 ns 
10 to 50 MGauss drive fields 
1-100 Mbar drive pressures 

1–4 kJ Z Beamlet Laser (ZBL) 
for radiography and 

MagLIF fuel preheating 



“Magnetic direct drive” is based on the idea that we can 
efficiently use large currents to create high pressures 
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Magnetically-Driven Implosion 

100 MBar at 26 MA and 1 mm  

(1 atm = 1 bar = 105 Pascals) 

Z today couples ~0.5 MJ 
out of 20 MJ stored to 

MagLIF target (0.1 MJ in 
DD fuel). 

Implosion time ~50 ns; stagnation ~0.1-1 ns 



Dist. [cm] 

3. Z drive current and Bθ field implode the liner 
(via z-pinch) at 50–100 km/s, compressing the 
fuel and Bz field by factors of 1000 

Cold DD or DT gas (fuel) 

Liner (Li, Be, or Al) 1. A 10–50 T axial magnetic field (Bz) is 
applied (~3-ms rise time) to inhibit thermal 
conduction losses and to enhance alpha 
particle deposition  ZBL 

beam ZBL  
preheated  
fuel 

2. ZBL preheats the fuel to 
~100–250 eV to reduce the 
required compression to 
CR≈20–30 

With DT fuel, simulations indicate scientific breakeven may be possible on Z 
(fusion energy out = energy deposited in fusion fuel) 

Z power flow 
(A-K gap) 

We are presently using the Z facility to study the 
Magnetized Liner Inertial Fusion (MagLIF)* concept 

Bz coils 

* S. A. Slutz et al., PoP 17, 056303 (2010).  S. A. Slutz and R. A. Vesey, PRL 108, 025003 (2012).  
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Anatomy of a MagLIF Experiment 

 Field Coils: 
Helmholtz-like coil 
pair produce a 10-
30 T axial field w/ 
~3 ms rise time 
 

 ZBL: 1-4 kJ green 
laser, 1-4 ns square 
pulse w/ adjustable 
prepulse (prepulse 
used to help 
disassemble laser 
entrance window) 

Field Coils 

Be Liner/Target 

Power Feed 

Coil Support 
Structure 

Z-Beamlet 
Laser (ZBL) 

A 
K z 

x 
y Fuel Fill Line 

Load-Current 
B-dots 
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 Be Liner: OD = 5.63 mm, 
ID = 4.65 mm, h = 5–10 
mm 

 LEH Window: 1-3 µm 
thick plastic window.  
Supports 60 PSI pure D2 
gas fill. 

 Washer: Metal (Al) washer 
supporting LEH window 

 Channel: Al structure used 
to mitigate the wall 
instability (also referred to 
as a “cushion”).  Also 
reduces LEH window 
diameter to allow thinner 
windows 

 Return Can: Slotted for 
diagnostic access 

Z-Beamlet 
Laser 

LEH Window 

Be Liner 
Slotted Return 
Current Can 

Channel 

Washer 

A 

K 

Anatomy of a MagLIF Target 
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Our initial MagLIF experiments have been 
very successful, demonstrating several key 
aspects of magneto-inertial fusion 

Isotropic, Gaussian 
DD neutron spectra 

Thermonuclear 
neutron generation 

High yields and 
temperatures 

Max DD neutron yield = 3e12 
Max ion temp = 2.5 keV 

M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014). P. F. Schmit et al., Phys. Rev. Lett. 113, 155004 (2014). 

A high aspect ratio 
stagnation column 
FWHM 50 – 110 µm 

mm 

mm 



Several key physics issues could be addressed with DT experiments 
Tritium fuel content 

Physics Measurement <0.1% 0.1% 1% 
Behavior of tritium in the Z 
pulsed power environment 

Sampling of tritium 
contamination, migration 

Scaling of yield to DT— 
thermonuclear? 

DT yield 

Ion temperature and  
non-thermal population 

Precision nTOF and DT/DD 
yield ratio 

Liner/fuel mix DT yield with tritiated gas 
fill and deuterated liner 

Fuel morphology Neutron imaging 
Thermonuclear reaction 
history 

Gamma Ray History/GCD, 
Thompson parabola 

Liner/fuel density, non-
thermal effects (peak 
shifts) 

Compact/Magnetic Recoil 
Spectrometer (CRS/MRS), 
precision nTOF 
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There are risks and hazards associated 
with implementing tritium on Z 
 Z is roughly 100’ in 

diameter and 20’ high 

 It uses large of amounts of 
oil and water for energy 
storage and pulse forming 

 MagLIF experiments will 
release tritium into the 
vacuum section 

 Tritium could affect day to 
day operations and could 
have potential legacy 
issues 

Oil 
section 

Water 
section 

Vacuum 
section  
or 
Target 
Chamber 
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Z vacuum center-section  
(target chamber) 

Top Vacuum 
Lid 

Bottom Vacuum Lid 

Magnetically 
Insulated 

Transmission 
Lines 

(MITLs) 

Vacuum 
stack 

(alternating stack 
of Rexolite and 
aluminum rings) 

Target or 
load region 

11’ 

24’ 

Z offers different challenges (and opportunities) as an 
HED facility 

The MITLS must be removed and 
cleaned between every shot 

Z operations requires people to work 
in the target chamber for every shot 
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Z presents a challenging and harsh environment due to the energetics 
and amount of hardware destroyed during a MagLIF experiment 

Post-shot picture of MagLIF experiment Pre-shot picture of  MagLIF experiment 

D. C. Rovang et al., Rev. Sci. Instr. 85, 124701 (2014).  



How much tritium in a MagLIF Target? 

12 

MagLIF target  Projected target size 
and inventories 
 
h = 10 mm 
rfuel = 2.75 mm 
V = 238 mm3 

P = 130 psi 
ρ = 1.5 mg / cc 
 
0.1% T  = 4.11 mCi 
1.0 % T = 41.1 mCi 
10% T   = 411 mCi 
50% T   = 2.55 Ci 
 

Present target size 
and inventories 
 
h = 7.5 mm 
rfuel = 2.32 mm 
V = 127 mm3 

P = 60 psi 
ρ = 0.7 mg / cc 
 
0.1% T  = 1.23 mCi 
1.0 % T = 12.3 mCi 
10% T   = 123 mCi 
50% T   =  0.62 Ci 
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 Robust tritium capable gas transfer 
system 
 Uses metal diaphragm puncture valve 
 Minimizes tritium inventory 
 Controls when and where tritium is used 
 Fills target in-situ just prior to shot 

We recently completed development of the Z Gas Transfer 
System (ZGTS)* capable of filling MagLIF targets in-situ on Z  

* Initial joint development with Art Nobile and Mike Rogers from LANL 



The ZGTS would increase the total inventory but the residual 
tritium would be introduced to Z in an elemental state 

14 

Present target size 
and inventories 
 
0.1% T  = 1.23 mCi 
1.0 % T = 12.3 mCi 
10% T   = 123 mCi 
50% T   =  0.62 Ci 

MagLIF target  

ZGTS residual 
inventories 
 
0.1% T =  16 mCi 
1% T    =  160 mCi 
10%     =  1.6 Ci 
50%      =  8.0 Ci 

 Elemental tritium easier to 
purge or remove from the 
Z chamber  

 We are considering ways 
to trap the residual tritium 
in the ZGTS 

 Total inventories for initial 
low T ( ~ 1 %) operations 
seem acceptable to 
“stack” without trapping 
or tritium capture 
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Our ability to minimize the impact on the facility depends on 
the ability to purge the tritium from the Z target chamber 

15 

Flow analysis of the Post Shot Air Exchange 
System (PSAX) for Z target chamber  Z maximum shot rate is presently 1 shot 

/ day 
 Z must be vented and opened after 

every shot  
 Can we use this to our advantage? 
 PSAX was designed and implemented 

to eliminate hazardous decomposition 
products 

 Is it sufficient for T? 
 Or do we need PSAX x2, x10? 
 Overnight or extended purge vs. ½ 

hour? 
 Other ideas? 

 
 
 

 

Volume Z Target Chamber = 66 m3 

Total surface area = 464 m2  
 

PSAX Flow rate = 765 CFM 
20 air exchanges / hr. 
Typical purge time = ½ hour 
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We will implement a new MITL refurbishment 
enclosure in CY16  

 New enclosure will be more 
compatible with tritium 
operations 
 

 Totally enclosed Perma-Con 
structure with single pass 
ventilation 
 

 May provide for contingency 
ventilated decontamination of 
MITLS  
 Better airflow over surfaces with 

gaps between MITLS 

16 

New MITL refurbishment enclosure 
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We may want to consider a removable target chamber 
concept to help minimize impact on the facility 

 Basic concept is to keep 
most of the tritium and 
debris inside a large 
removable chamber  

 This chamber would be 
removed and refurbished at 
a separate facility 

 Goal is to minimize clean up 
and decontamination 
required of the main Z 
chamber including the 
MITLS and stack 
 
 
 
 

 
 
 

 

Removable 
target chamber 
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