

Grid Integration of Manufacturing Technology Workshop

February 10th, 2016

Mark Johnson

Director

Advanced Manufacturing Office *www.manufacturing.energy.gov*

Clean Energy and Manufacturing: Nexus of Opportunities

Security

- Energy self-reliance
- Stable, diverse energy supply

Economy

Clean Energy
Solutions

Environment

- Competitiveness in clean energy
- Domestic jobs

- Clean air
- Climate change
- Health

Clean Energy Manufacturing

Making Products which Reduce Impact on Environment

Advanced Manufacturing

Making Products with Technology as Competitive Difference

Clean Energy Manufacturing Initiative – Across DOE

Advanced Manufacturing – Strategic Inputs

Climate Action Plan (EOP / CEQ / OSTP 2014)

Advanced Manufacturing Partnership (AMP2.0) (NEC / PCAST / OSTP 2014)

Quadrennial Energy Review (DOE / EPSA 2015)

Quadrennial Technology Review (DOE / Science and Technology 2015)

1) Broadly Applicable

<u>Efficiency Technologies</u> for

Energy Intensive and Energy

Dependent Manufacturing

2) Platform Materials & Processes Technologies for Manufacturing Clean Energy Technologies

DOE QTR: Manufacturing Technology

Advanced Manufacturing Topical Priorities

Efficiency Technologies for Manufacturing Processes (Energy, CO₂)

- (1) Advanced Sensors, Controls, Modeling and Platforms (HPC, Smart Manf.)
- (2) Advanced Process Intensification
- (3) Grid Integration of Manufacturing (CHP and DR)
- (4) Sustainable Manufacturing (Water-Energy, New Fuels & Feedstocks)

Platform Materials & Technologies for Clean Energy Applications

- (5) Advanced Materials Manufacturing (incl: Extreme Mat'l., Conversion Mat'l, etc.)
- (6) Critical Materials
- (7) Advanced Composites & Lightweight Materials
- (8) 3D Printing / Additive Manufacturing
- (9) 2D Manufacturing / Roll-to-Roll Processes
- (10) Wide Bandgap Power Electronics
- (11) Next Generation Electric Machines (NGEM)

QTR Manufacturing Focus Areas Mapped to Advanced Manufacturing Topical Areas for Technology Development

Bridging the Gap to Manufacturing

AMO: Advanced Manufacturing Office

Concept \rightarrow Proof of Concept \rightarrow Lab scale development \rightarrow Demonstration and scale-up \rightarrow Product Commercialization

Modalities of Support

<u>Technology Assistance</u>: (Dissemination of Knowledge)

Better Plants, ISO-50001 / SEP, Industrial Assessment Centers, Combined Heat and Power Tech Assistance Centers, Energy Management Tools & Training

<u>Technology Development Facilities</u>: (Innovation Consortia)

Critical Materials Hub, Manufacturing Demonstration Facility (Additive), Power America NNMI, IACMI NNMI, CyclotronRoad, HPC4Manufacturing

<u>Technology Development Projects</u>: (Individual R&D Projects) Individual Projects Spanning AMO R&D Space - University, Small Business, Large Business and National Labs. Each a Project Partnership (Cooperative Agreement).

Industrial Technical Assistance

Combined Heat and Power

Technical Assistance Partnerships

Energy-Saving Partnership

3M

Better Buildings, Better Plants, Industrial Strategic Energy Management

Student Training & Energy Assessments

University-based Industrial Assessment Centers

Shared R&D Facilities & Consortia

Address market disaggregation to rebuild the industrial commons

- RD&D Consortia based Eco-Systems

- Public-private partnership to scale

Critical Materials Institute

A DOE Energy Innovation Hub

- Consortium of 7 companies, 6 universities, and 4 national laboratories
- Led by Ames National Laboratory

	Dy	Eu	Nd	Tb	Υ	Li	Те
Lighting		√		√	√		
Vehicles	✓		✓			✓	
Solar PV							\
Wind	✓		✓				

Critical Materials - as defined by U.S. Department of Energy, <u>Critical Materials Strategy</u>, 2011.

Recycling

Supply

Manufacturing Demonstration Facility

Supercomputing Capabilities

Spallation Neutron Source

Additive Manufacturing

POM laser processing AM equipment

Program goal is to accelerate the manufacturing capability of a multitude of AM technologies utilizing various materials from metals to polymers to composites.

PowerAmerica:

Next Generation Power Electronics Manufacturing Institute

Institute Mission:

Develop advanced manufacturing processes that will enable large-scale production of wide bandgap semiconductors

- ➤ Higher temps, voltages, frequency, and power loads (compared to Silicon)
- Smaller, lighter, faster, and more reliable power electronic components

- ⇒ \$3.3 B market opportunity
 by 2020.¹
- Opportunity to maintain U.S. technological lead in WBG

Poised to revolutionize the energy efficiency of electric power control and conversion

Institute for Advanced Composite Materials Innovation (IACMI)

Objective

Develop and demonstrate innovative technologies that will, within 10 years, make advanced fiber-reinforced polymer composites at...

SMART Manufacturing: Advanced Controls, Sensors, Models & Platforms for Energy Applications

Focus on Real-Time For Energy Management

- Encompass machine-to-plant-to-enterprise real time sensing, instrumentation, monitoring, control, and optimization of energy (>50% improvement in energy productivity)
- Enable hardware, protocols and models for advanced industrial automation: requires a holistic view of data, information and models in manufacturing at Cost Parity (>50% reduction in installation cost)
- Significantly reduce energy consumption and GHG emissions & improve operating efficiency – (15% Improvement in Energy Efficiency)
- Increase productivity and competitiveness across all manufacturing sectors:
 - Special Focus on <u>Energy Intensive</u> & <u>Energy Dependent</u> Manufacturing Processes

Topical Engagement with Industry

Advanced Materials Materials in Extreme Conditions Sustainable Materials in Manufacturing Process Intensification (Chemical) **Process Intensification Process Intensification (Thermal)** Roll-to-Roll Processing **Functional Membrane Structures Smart Manufacturing** Advanced Sensors, Controls, Models, Platforms

Workshops inform BOTH potential institute topics AND broader R&D portfolio

R&D Projects: Manufacturing Processes

Ultrafast, femtosecond pulse lasers (right) will eliminate machining defects in fuel injectors.

Image courtesy of Raydiance.

Energy-efficient large thin-walled magnesium die casting, for 60% lighter car doors.

Graphic image provided by General Motors.

Protective coating materials for high-performance membranes, for pulp and paper industry.

Image courtesy of Teledyne

A water-stable protected lithium electrode.

Ceramic Solid compliant Electrolyte i Metal Courtesy of PolyPlus **PLETM**

R&D Projects: Combined Heat and Power(CHP)

Advanced MicroTurbine System (AMTS) R&D Program

C200 MicroTurbine Engine

Capstone photos source: capstoneturbines.com

Advanced Reciprocating Engine Systems (ARES) R&D Program

QSK60G engine

DOE QTR: Manufacturing Technology

Information & Data Processes Materials

Energy & Resource Management

Advanced Manufacturing Processes

Materials Development

Advanced Manufacturing Topical Priorities

Efficiency Technologies for Manufacturing Processes (Energy, CO₂)

- (1) Advanced Sensors, Controls, Modeling and Platforms (HPC, Smart Manf.)
- (2) Advanced Process Intensification
- (3) Grid Integration of Manufacturing (CHP and DR)
- (4) Sustainable Manufacturing (Water-Energy, New Fuels & Feedstocks)

Platform Materials & Technologies for Clean Energy Applications

- (5) Advanced Materials Manufacturing (incl: Extreme Mat'l., Conversion Mat'l, etc.)
- (6) Critical Materials
- (7) Advanced Composites & Lightweight Materials
- (8) 3D Printing / Additive Manufacturing
- (9) 2D Manufacturing / Roll-to-Roll Processes
- (10) Wide Bandgap Power Electronics
- (11) Next Generation Electric Machines (NGEM)

QTR Manufacturing Focus Areas Mapped to Advanced Manufacturing Topical Areas for Technology Development

Energy Consumption by Sector

OverGeneration and Intermittent Generation Resources

Deeper Look at Energy in Manufacturing

Grid Integration and CHP

Connections to other QTR Chapters and Technology Assessments

Representative Intra-Chapter Connections

- Sustainable Manufacturing / Advanced Materials Manufacturing: modular design of CHP systems for easier reconfiguration, upgrade and repair
- Waste Heat Recovery: heat recovery for CHP systems
- **Process Heating:** integration of CHP with manufacturing process heating equipment
- Advanced Sensors, Controls, Platforms and Modeling for Manufacturing: models to support development of high-efficiency CHP configurations; improved controls for grid integration

Representative Extra-Chapter Connections

- Grid: CHP for distributed generation
- Electric Power: CHP for distributed generation
- Buildings: CHP for commercial, institutional, and multi-family residential buildings, and data centers

Questions Regarding Grid Integration of Manufacturing

Cost Effective and Agile Conversion of Heat (Exergy) to Power

- Small Scale / Cost Effective System
- Utilization of Multiple Wastes
- Rampable and Reliable System Resources

Cost Effective, Agile and Economical Demand Response

- Intelligence Throughout Manufacturing
- Decision Making and Control Technologies

Cost Effective Use of Manufacturing for Power Stability

- Higher Heat Rates
- Technology Challenges
- Cost-Performance Trade-Offs: Technologies to Bend Cost Curves

Focus on Technology Challenges

Thank You!

Manufacturing Technology Maturation

ENERGY

Basic Research

Applied Research

Deployment

Development Demonstration

Bandwidth Studies: Energy Savings Potentials

Current opportunities represent energy savings that could be achieved by deploying the most energy-efficient commercial technologies available worldwide. R&D opportunities represent potential savings that could be attained through successful deployment of applied R&D technologies under development worldwide

Energy Intensive Industries

Primary Metals 1608 TBTU

Petroleum Refining 6137 TBTU

Chemicals 4995 TBTU

Wood Pulp & Paper 2109 TBTU

Glass & Cement 716 TBTU

Food Processing 1162 TBTU

Processes for Clean Energy Materials & Technologies

Energy Dependence: Energy Cost Considered in Competitive Manufacturing

Solar PV Cell

Carbon Fibers

Light Emitting Diodes

Electro-Chromic Coatings

Membranes

Multi-Material Joining

Shared R&D Facilities & Consortia

Address market disaggregation to rebuild the industrial commons

- RD&D Consortia based Eco-Systems

- Public-private partnership to scale

Manufacturing Technology Maturation

Research

₋ab

Facilities

Industry Partnerships

End-Use Adoption

TRL 6/7: System Testing in Production Relevant Environment

MRL 6/7: System Components made in Pilot Environment

TRL 5/6: Hardware-in-Loop System Testing in Laboratory

MRL 5/6: Investigate Pilot Environment to Make Systems

TRL 4/5: System Technology Tested in Laboratory

MRL 4/5: Investigate Pilot Environment to Make Components

TRL 3/4: Enabling Technology Tested in Laboratory

MRL 3/4: Enabling Components Made in Laboratory

TRL 1-3:

MRL 1-3:

Foundational Science

ENERGY