Waste to Energy

BIA Providers Conference Anchorage, Alaska December 1, 2015

George Roe Research Professor University of Alaska - Fairbanks

What is waste-to-energy (W2E)?

- Types of waste ...
- Kinds of energy ...
- Key attributes ...
- Key considerations ...

Not from the Geng Enter (+ 144) Matter Mark See

ANC landfill gas-to-energy project

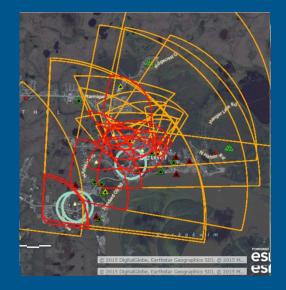
Alaska Department of Environmental Conservation

Solid Waste Program

Lori Aldrich Regional Program Manager

Rural landfills

Rural sewage lagoons


Gathering information

ADEC

- Solid Waste Program SWIMS database
- Village Safe Water
- GIS Map

EPA

 STARS (Sanitation Tracking and Reporting System)

W2E potential benefits

- Reduce landfilled waste
 Extend landfill life
 Reduce landfill management
 Eliminate sewage solids monofills
 Improved air quality
 Less emissions than burn box
 Reduced fire dangers
- Provide energy as power or heat

W2E potential difficulties

- Expensive
 - Long term investment
 - Requires a building
 - Diesel start up
- Unfamiliar technology
 - Training to operate
 - Difficult to repair
- May require additional permits

W2E permitting

- Solid Waste
 - Treatment Permit if over 5 tons /day
 - Plan approval if less
 - Ash sampling
- Air Quality
 - Required for incinerator over 1000#/hour capacity
 - Minor Permit
 - Emissions Monitoring

Systems currently in use

Used Oil Burners

- Common in rural communities
- Difficult to manage waste

Biomass Burners

 Burning pellets or logs from wood, plants, or paper

So, what about energy from waste?

Future?

Interests & priorities

- Extend usability of existing landfills
- Reduce health risks associated with polluted ground & surface waters
- Intercept / mitigate contaminants threatening drinking water & natural habitat
- Replicable / scalable in AK context
- Affordable & reliable

When is net energy neutral good enough?

"Triple bottom line" perspective

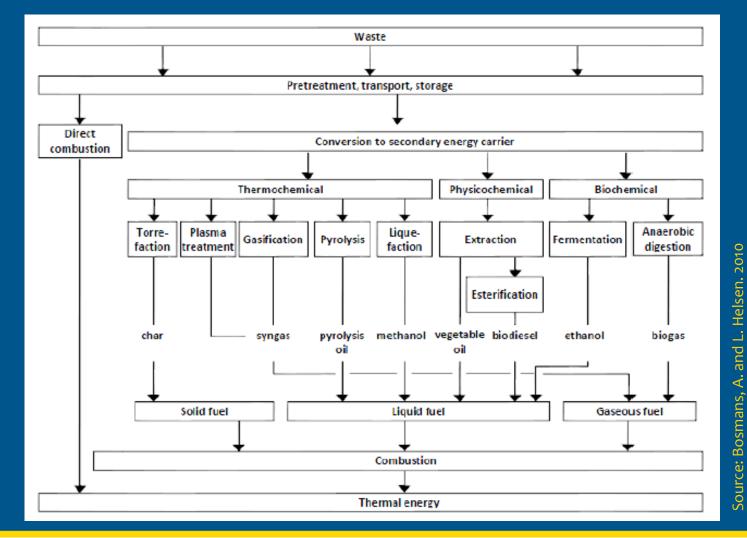
Economic
Health care & tipping fees cost reduction
Possibility to sell ash or use for construction projects in town
Offsets heating or electric cost

Social

- Reduce human contactand exposure to waste
- Health benefits to increased air quality
 Improved aesthetics

Environmental Reduces toxic chemicals entry to water / food

- Reduces unwanted human/wildlife contact
 - Reduces greenhouse gas emissions


Thermal energy from ...

Waste to energy – the technologies

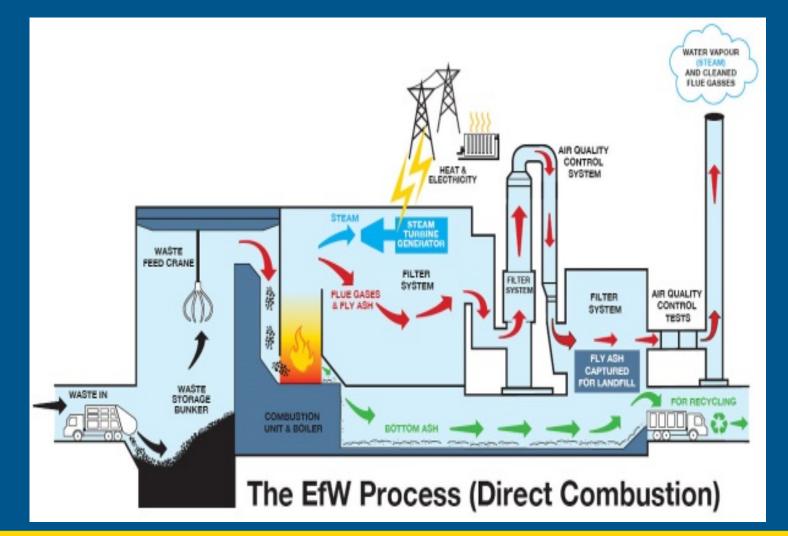
ALASKA FAIRBANKS

Waste to energy – anaerobic digestion

Waste to energy – gasification

Waste to energy – plastics to fuel

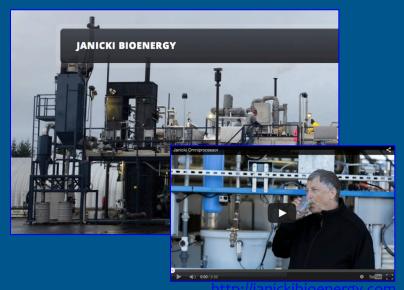
United Nations University's Our World Magazine


- Maturity?
- Net energy?
- Operating costs
- Best-value product utilization
- Feedstock capture, type & preparation

Waste to energy – incineration

Cardboard as a heating fuel

- Cardboard Corrugated shipping boxes
- Processing
 - Removed banding, staples, tape, and labels
 - Cardboard is abrasive -will reduce life of pelletizing dies
- Combustion
 - White boxes usually chlorine-bleached \rightarrow corrosion / early failure
 - High ash volumes produced \rightarrow requires more handling
 - 13.8 mmBtu/ton lower heating value than wood
 - Moving grate boiler allows for better control of combustion.
 - EVO World and Garn interested in testing cardboard as a fuel
 - Air permitting might be required depending on system size



Some W2E options

- Need?
- Technology status?
- Scale?
- Environment?
- Funding?

Considerations for a W2E project

- 1. Waste stream
 - Types of MSW?
 - % of combustibles?
 - Weight of combustibles?
 - Separation? Percent recovery?
 - Condition contamination, moisture, …?
- 2. Heat loads
 - Located near waste boiler
 - Annual usage of heating fuel

Dump Site Waste Inventories

Community Comparison Waste Stream Percentages			Community Comparison Waste Total				
Material	Kotzebue	Kalskag	Canada	Material	Kotzebue(tons/yr)	Kalskag(tons/6 months)	Northwest Territories(tons/yr)
Food Waste	18.60%	14%	19.60%	Food Waste	90.00	7.20	93.90
Cardboard	18.70%	6.30%	10.90%	Cardboard	290.00	3.20	52.20
Paper	14.10%	20.40%	17.40%	Paper	220.00	10.40	83.40
Metal	8.60%	8.70%	10.30%	Metal	140.00	4.40	49.30
Plastics/rubber/leather	17.90%	10.00%	12.20%	Plastics/rubber/leather	270.00	5.10	58.40
Glass	4.80%	2.50%	4.10%	Glass	80.00	1.30	19.60
Wood	6.50%	-	11.30%	Wood	60.00		54.10
Textiles	2.80%	-	3.70%	Textiles	40.00	-	17.70
Diapers	-	12.40%	6.70%	Diapers	_	6.30	6.30
Bathroom/medical waste	-	12.60%	-	Bathroom/			
Other Trash	8.00%	13.00%	3.80%	Other Trach	- 130.00	6.40	- 18.20
Total	100.00%	100%	100.00%	Other Trash Total	130.00	6.60 50.90	18.20 453.10

X – Y tons / person / yearX – Y % wood, paper and cardboard

US Army waste stream – contingency bases

Wa	ste Component	CB #1	CB #2	CB #3	CB #4	CB #5	Afghanistan Avg (Weighted) ^b
Corrugated	d Cardboard	9.5%	15.10%	9.3%	13.1%	16.2%	13.7%
Food Wast	le	15.5%	20.70%	24.5%	15.5%	24.6%	19.1%
Liquid		NR ^b	5.80%	7.4%	7.3%	6.4%	6.6%
Miscellane	ous Waste	5.1%	1.10%	3.6%	1.5%	2.0%	1.6%
Mixed Pap	er	28.8%	13.30%	10.5%	14.4%	5.3%	13.2%
tible	Ferrous Metal	1.2%	3.30%	5.7%	2.4%	3.5%	3.2%
Non- Combustible	Non-Ferrous Metal	2.3%	1.80%	2.0%	1.4%	1.1%	1.6%
3	Glass	1.0%	0.20%	0.2%	0.2%	0.7%	0.2%
Other Com	ibustible	5.5%	0.50%	2.2%	2.2%	0.8%	0.5%
	#1- PET	10.6%	7.00%	5.5%	6.1%	3.2%	6.4%
	#2 - HDPE	5.0%	5.40%	4.2%	1.6%	1.6%	3.7%
cs	#3 - PVC	4.4%	0.70%	0.8%	0.5%	1.2%	0.7%
Plastics	#4 - LDPE/LLDPE	1.3%	2.80%	1.9%	3.1%	1.0%	2.8%
PI	#5 - PP	0.1%	0.20%	0.3%	0.2%	0.1%	0.2%
	#6 - PS	7.3%	2.20%	1.0%	1.2%	1.0%	1.6%
	#7 - other	0.1%	0.70%	0.4%	0.6%	0.5%	0.6%
Total Plast	tic (All Types)	28.8%	19.00%	14.1%	13.3%	8.6%	16.0%
Textile		1.3%	5.40%	4.1%	5.6%	3.0%	5.3%
Wood		1.0%	13.70%	16.5%	25.3%	27.0%	18.9%
Total		100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Averages for Afghanistan bases weighted in proportion to the base total weight of waste processed annually. Refer to appendix C for more

Source: U.S. Army Logistics Innovation Agency. 2013

generally rounded to nearest tenth of a percent.

information (page C.9).

Waste stream trends

Biogenic	Non-Biogenic
Newsprint	Plastics
Paper	PET
Containers & packaging	HDPE
Textiles	PVC
Yard trimmings	LDPE/LLDPE
Food wastes	PP
Wood	PS
Other biogenic	Other plastics
Leather	Rubber
	Other non-biogenic

- Organic biogenic content decreasing
- Paper biogenic content increasing
- Non-biogenic content increasing
- Pharmaceuticals & other contaminants

Waste energy & moisture content

	Con
	Foo
013	Liqu
, 2(Mis
ncy	Con Foo Liqu Mis Mix
novation Age	Non- Combustible
<u> </u>	Oth
Source: U.S. Army Logistics Innovation Agency. 2013	Plastic
Ľ.	Text
Sol	Woo

	Category	Heat Content (MMBtu/dry ton)		
Corrugated Cardboard		17		
Food	Waste	13		
Liqui	id	0		
Misc	ellaneous Waste	20		
Mixe	d Paper	7		
ble	Ferrous Metal	0		
Combustible	Non-Ferrous Metal	0		
Con	Glass	0		
Other Combustible		27		
	#1- PET	21		
	#2 – HDPE	19		
0	#3 – PVC	17		
Plastic	#4 - LDPE/LLDPE	24		
Ч	#5 – PP	38		
	#6 – PS	36		
	#7 – other	21		
Textile		14		
Woo	d	10		

Waste Component		Average Field Measurement		
Corrug	gated Cardboard	12.6		
Food	Waste	53.6		
Liquid		100.0		
Misce	llaneous Waste	57.8		
Mixed	l Paper	34.1		
ble	Ferrous Metal	0.0		
Non- Combustib	Non-Ferrous Metal	1.3		
	Glass	0.0		
Other Combustible		6.4		
	#1- PET	0.0		
	#2 - HDPE	9.6		
	Corrugated Cardboard Food Waste Liquid Miscellaneous Waste Mixed Paper Ferrous Metal Glass Other Combustible #1- PET #2 - HDPE #3 - PVC #4 - LDPE/ LLDPE #5 - PP #6 - PS #7 - Other Textile	6.7		
lastic		14.4		
-	#5 - PP	0.0		
	#6 - PS	7.2		
	#7 - Other	1.6		
Textile	e	21.9		
Wood		7.9		

Moisture %

1.98 MMBtu/ton water to heat from 68 to 212- deg F & evaporate

MSW waste resource

MSW Generation (tons/person/year)
Village: 0.19
Hub Town: 0.41
US Average: 0.81

		MSW Generation (Ton/day)				
Location Populatio		Village	Hub Town	US Avg		
Alaska	736,000	383	827	1,633		
ANC-FAI-JNU	530,000	276	595	1,176		
Other	206,000	107	231	457		
Hub Town	4,500	2.3	5.1	10.0		
Village	75	0.0	0.1	0.2		

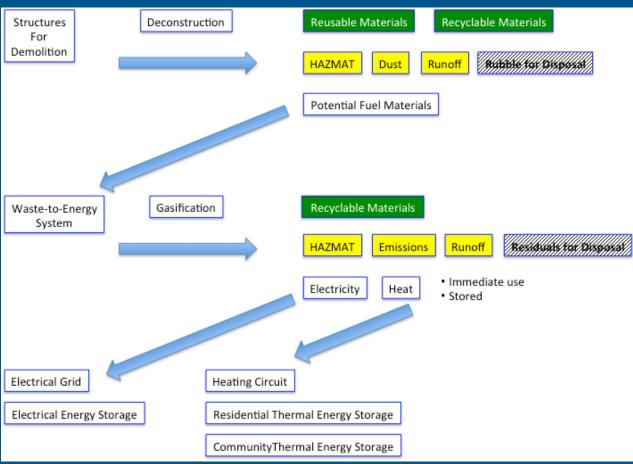
Does it compute?

Waste generation scenario

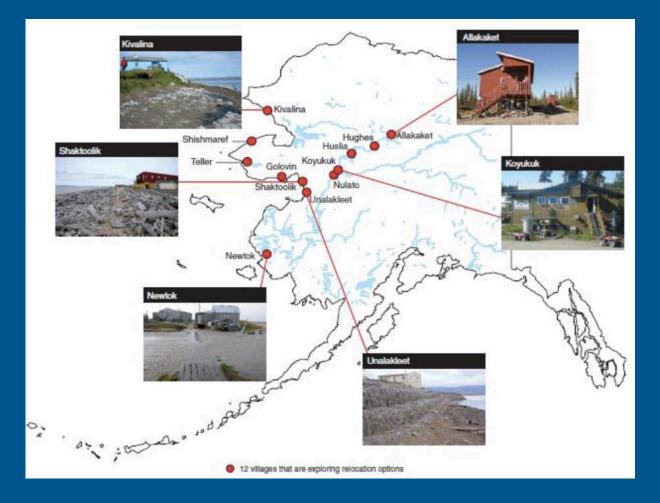
Rate	54,000 tons/year
Energy content	10.0 MMBtu/ton
Moisture content	20% %
Conversion efficiency	80% %
Annual energy	328,493 MMBtu/year

... vs. Building Energy Requirements (MMBtu/year)

Climate zone 6 Climate zone 7 Climate zone 8 State average	Residential 202 282 264 269	2 2 4	esidential ,546 ,474 ,572 ,152	North Stope North Stope Northwest Active VVoide Hempton Dillingham Bethel Dillingham Bethel Bistol Bay Aleutians East Lake and Peninsula		Wrangell P etersburg ik Island Ketchikan Geteway
			Zone 6	Zone 7	Zone 8	Zone 9
		Alaska Census Areas	Juneau Ketchikan Gateway Prince of Wales Sitka Skagway-Hoonah-Angoon Wrangell-Petersburg Yakutat Haines	Aleutians East Aleutians West Anchorage Bristol Bay Dillingham Kenai Peninsula Kodiak Island Lake and Peninsula Matanuska-Susitna Valdez-Cordova	Bethel Denali Fairbanks North Star Nome Northwest Arctic Southeast Fairbanks Wade Hampton Yukon-Koyukuk	North Slope
		HDD (65) per IECC 2012	7,200 - 9,000	9,000 -12,600	12,600 -16,800	16,800 -21,000



From Rubble to Rubles?



Climate change \rightarrow village relocation

Leverage opportunity?

- Defense & industry investing in transportable waste-to-energy technology
- Multiple feedstock options
 - Agriculture & food industry waste
 - Seafood processor waste
 - Municipal solid waste
 - Sewage lagoons
 - Building demolition

Joint Deployable Waste to Energy Program

W2E collaboration opportunities

- Needs assessment
- Resource evaluation
- Technology guidance
- Prototype testing
- Field demonstrations
- Replication & scaling
- Best practices
- Commercialization
- Support

$\mathsf{Local} \xrightarrow{\rightarrow} \mathsf{Regional} \xrightarrow{\rightarrow} \mathsf{National} \xrightarrow{\rightarrow} \mathsf{Global}$

A working group?

- Identify interested organizations
- Identify waste-related challenges experienced by communities
- Review available waste inventories
- Assess feedstock opportunities
- Match feedstock with system supplier capabilities
- Develop replicable / scalable demonstration / pilot program with evaluation criteria
- Collaborate with DoD on JDW2E evaluation
- Leverage in-state and external funding resources

Points of contact

Lori Aldrich

Regional Program Manager ADEC Solid Waste Program (907) 269-7622 Iori.aldrich@alaska.gov

Eric Hanssen Senior Energy Project Manager Alaska Native Tribal Health Consortium (907) 729-3620 echanssen@anthc.org

Givey Kochanowski

Alaska Program Manager U.S. DOE - Office of Indian Energy (907) 271-1423 givey.kochanowski@hq.doe.gov

Devany Plentovich

Biomass Program Manager Alaska Energy Authority (907) 771-3068 dplentovich@aidea.org

George Roe Research Professor Alaska Center for Energy & Power (206-454-9189 gmroe@alaska.edu

