Quality Assurance for Performance Assessment Modeling

John Tauxe, Paul Black, Mike Sully, Dan Levitt

Motivation for QA in PA

The overarching motivation for Performance Assessment work is defensible decision making, and that requires:

- a defensible basis for modeling,
- transparent and intelligible modeling, and
- effective communication of modeling approaches and results

These are goals shared by the CoP.

Defensibility in Modeling

Defensible decision making needs defensible modeling. This requires:

- an accepted Conceptual Site Model (CSM),
- concepts and parameters that are traceable to their source,
- a transparent analysis of parameters, and
- coherent statistics.

Without these, it may as well be Garbage IN ⇔ Garbage OUT.

Computers are not Magic

"On two occasions I have been asked, "Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?"

I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question."

Charles Babbage 1791 – 1871

Passages from the Life of a Philosopher (1864), Ch. 5 "Difference Engine No. 1"

Model Evaluation

Best Practices:

- Peer Review
- Model Corroboration
- Sensitivity Analysis
- QA Project Planning data quality assessment

Neptune's GoldSim PA QA

Neptune's Quality Assurance (QA) for GoldSim PA models includes

- development of FEPSs* and CSM,
- stochastic parameter development,
- manual QA checking of all values,
- model building, and
- model testing,
- subject to strict configuration control.

*Features, Events, Processes, and Scenarios.

FEPSs and CSM

Features, Events, Processes and Scenarios analysis:

 Defining and screening FEPSs assures that the PA and its model are not missing anything.

Development of a **C**onceptual **S**ite **M**odel:

 Defining a CSM helps to vet the model among stakeholders and model developers alike.

These are part of QA.

Parameter QA Process

Neptune's Process:

- Identify and collect information about a process or parameter, from literature, site specific studies, etc.
- Perform *manual number-by-number QA check* on that information. This is called a check print.
- Develop *statistically appropriate* stochastic *input distribution(s)*.
- Perform manual QA check on statistical analysis.
- Incorporate synopsis of parameter development into a topical *white paper*.
- Perform manual *QA check* on values in white paper.
- Add values to the model *Parameters Document* or Workbook.
- Perform manual *QA check* on Param Doc or Workbook.
- *Transfer values* to the GoldSim PA model.
- Perform Manual *QA check* on model values, and record in the model using GoldSim's native QA note tools.

Check Prints

Neptune's Manual QA *Check Print* Process:

- A calculation sheet, white paper, or other document is prepared by an analyst, with a copy of all cited references. This is printed to hard copy.
- An independent person, not associated with the collection and assembly of information, checks every value in the document against the value(s) in the cited references, and marks each item. For electronic transfers, every 10th value is checked.
- Errors are flagged, and the checker signs and dates the check print document to the analyst.
- Errors are fixed by the analyst, and the document is resubmitted for another check print.
- This iterates until all errors have been resolved.

Distribution Development

Stochastic input distributions must be developed with care.

- Data should not be censored without cause.
- Spatial and temporal aspects must be considered.
- Distributional forms should be based on natural behavior as well as data. A natural uniform or triangular distribution is rare.

Types of Distributions

Several types of stochastic input distributions:

- independent, single value parameter
- tables of related single values
- time series
- functional forms
- environmentally-related values
- values that must sum to unity
- complex interrelated variables
- values with patterns seen collectively
- values with spatiotemporal variability

Model Configuration Control

Neptune's rules for configuration control:

- There is only One True Model File at any given time.
- No two model files ever have the same filename.
- The custodian of the True Model is always known.
- Custodianship is passed explicitly to another.
- Model file naming follows a strict convention.
- Model development may take place in branch copies, but these are never confused with the One True Model.
- Native GoldSim versioning is used.

QA in Model Building

Building a model in GoldSim requires

- appropriate distribution development,
- clarity and transparency in coding,
- clear documentation of model development, and
- enhanced communication of concepts.
- Native GoldSim QA tools are used.

Transparency in Coding

{

This is opaque code:

```
FUNCTION BESSI(N,X)
      PARAMETER (IACC=40, BIGNO=1.0E10, BIGNI=1.0E-10)
      IF (N.LT.2) PAUSE 'bad argument N in BESSI'
      TOX=2.0/X
      BIP=0.0
      BI=1.0
      BESSI=0.
      M=2*((N+INT(SQRT(FLOAT(IACC*N))))))
      DO 11 J=M, 1, -1
        BIM=BIP+FLOAT (J) *TOX*BI
        BIP=BI
        BI=BIM
        IF (ABS(BI).GT.BIGNO) THEN
          BESSI=BESSI*BIGNI
          BI=BI*BIGNI
          BIP=BIP*BIGNI
        ENDIF
        IF (J.EQ.N) BESSI=BIP
11
      CONTINUE
      BESSI=BESSI*BESSIO(X)/BI
      RETURN
```

```
#include <math.h>
#define ACC 40.0
#define BIGNO 1.0e10
#define BIGNI 1.0e-10
float bessi(n,x)
int n;
float x;
    int j;
    float bi, bim, bip, tox, ans;
    float bessi0();
    void nrerror();
    if (n < 2) nrerror("Index n less than 2 in BESSI");
    if (x == 0.0)
        return 0.0;
    else {
        tox=2.0/fabs(x);
        bip=ans=0.0;
        bi=1.0;
        for (j=2*(n+(int) sqrt(ACC*n)); j>0; j--) {
            bim=bip+j*tox*bi;
            bip=bi;
            bi=bim:
            if (fabs(bi) > BIGNO) {
                 ans *= BIGNI;
                bi *= BIGNI;
                bip *= BIGNI;
            }
            if (j == n) ans=bip;
        }
        ans *= bessi0(x)/bi;
        return x < 0.0 && n%2 == 1 ? -ans : ans;
    }
#undef ACC
#undef BIGNO
#undef BIGNI
```

with apologies to Numerical Recipes

END

Always a Documentation Nut

This is commented code: Remember ASCII art?

So for the purposes of this DarcyTrack function, the elemental

	so for the purposes of this barcyfrack function, the elementar
	* cell over which calculations are done must be a quarter
/* dfWinbox and dfCellSize are defined globally */	 * of the original GRID cells, to ensure uniform properties
<pre>double dfX, dfY; /* f.p. index to cell */</pre>	* over the cell area:
double dfDenominator; /* temp variable */	*
<pre>int iX, iY; /* cell index number */</pre>	* + +
<pre>int nxLower, nyLower; /* index to lower bounding cell */</pre>	*
<pre>int nxUpper, nyUpper; /* index to upper bounding cell */</pre>	* 0 0 0
POINT ptLower, ptUpper; /* corner points bounding cell */	*
<pre>float fTemp; /* temporary variable */</pre>	* + + +
	*
	* 0 0
/* I was forced to add this since for some reason nCols and nRows	*
* are not consistently read properly above using PrivateWindowCols	* + + +
* and PrivateWindowCols. */	*
nCols = (int) ((Xmax(dfWinbox) - Xmin(dfWinbox)) / dfCellSize	* []
nRows = (int) ((Ymax(dfWinbox) - Ymin(dfWinbox)) / dfCellSize	
	*
/* Determine which cell contains the point ppt. */	* Notes on orientation: (This is a square GRID cell)
/* First, work with the GRID cells, to subdivide later. */	*
, THESE, WORK WICH SHE SHED SHEET, SO SABATVIAL TABLET. ,	* Ymax ++ pt.x and pt.y are in real
<pre>/* Find cell index number of Lower bounding cell. */</pre>	* coordinates
dfX = (ppt->x - Xmin(dfWinbox)) / dfCellSize;	*
iX = (int)dfX; /* truncation to integer */	* Xmin, Xmax, Ymin, Ymax are
IX = (Int)dIX; /* truncation to integer */	* in real coordinates,
dEV _ / Very/ dEVinkey) _ pet by) / dECallCies.	* and are the limits of
dfY = (Ymax(dfWinbox) - ppt->y) / dfCellSize;	* pt.y + iY + pt the grid, as stored
<pre>iY = (int)dfY; /* truncation to integer */</pre>	* in the global
	* variable dfWinbox
<pre>pcell->iX = iX;</pre>	*
<pre>pcell->iY = iY;</pre>	* iX and iY are cell column
	* iX (left to right) and
	* Ymin ++ row (top to bottom)
some of my C and from graduate school	* Xmin pt.x Xmax

some of my C code from graduate school

Transparency in GoldSim Coding

This is an example of sloppy GoldSim coding.

Aliases are not used, nor are sensible indices to the cited columns used by GetColumn().

The QA on this would be timeconsuming and difficult.

(About $\frac{1}{2}$ of this expression is shown here.)

Performance and Risk Assessment Cor

xpression Prop	erties : Pre_1990_Point_Estimates	23
Definition		
Element ID:	Pre_1990_Point_Estimates Appearan	nce
Description:	MAP, MFP, and material type inventories in the pre	-1990
Display Units:	Ci Type Vector[Material_Type	es]
😲 Value (Ci) = [2166, 70.15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,]
+Getcolumr 3, 124)+Get PA_Invent 1990_PA_Ir (Input_Inve +Getcolumr 3, 137)+Get PA_Invent 1990_PA_Ir (Input_Inve +Getcolumr 3, 148)+Get PA_Invent 1990_PA_Ir (Input_Inve +Getcolumr 3, 148)+Get PA_Invent 1990_PA_Ir (Input_Inve +Getcolumr 3, 159)+Get PA_Invent 1990_PA_Ir (Input_Inve +Getcolumr 3, 163)+Get PA_Invent 1990_PA_Ir (Input_Inve +Getcolumr 3, 163)+Get PA_Invent 1990_PA_Ir (Input_Inve +Getcolumr 3, 167)+Get PA_Invent 1990_PA_Ir (Input_Inve +Getcolumr 3, 167)+Get PA_Invent 1990_PA_Ir (Input_Inve +Getcolumr 3, 167)+Get PA_Invent 1990_PA_Ir (Input_Inve +Getcolumr 3, 167)+Get PA_Invent 1990_PA_Ir (Input_Inve +Getcolumr 3, 171)+Get PA_Invent	input_Inventories.Pre_1990_PA_Inventories_3,22) (Input_Inventories.Pre_1990_PA_Inventories_ column(Input_Inventories.Pre_1990 ories_3,131) +Getcolumn intories.Pre_1990_PA_Inventories_3,136) (Input_Inventories.Pre_1990_PA_Inventories_ column(Input_Inventories.Pre_1990 ories_3,139) +Getcolumn intories.Pre_1990_PA_Inventories_3,141) (Input_Inventories.Pre_1990_PA_Inventories_ column(Input_Inventories.Pre_1990_PA_Inventories.Pre_ inventories_3,140) +Getcolumn intories.Pre_1990_PA_Inventories_3,141) (Input_Inventories.Pre_1990_PA_Inventories.Pre_ inventories_3,143) +Getcolumn(Input_Inventories.Pre_ inventories_3,143) +Getcolumn(Input_Inventories.Pre_ inventories_3,144) +Getcolumn intories.Pre_1990_PA_Inventories_3,147) (Input_Inventories.Pre_1990_PA_Inventories.Pre_ inventories_3,155) +Getcolumn intories.Pre_1990_PA_Inventories_3,158) (Input_Inventories.Pre_1990_PA_Inventories_Pre_ inventories_3,161) +Getcolumn intories.Pre_1990_PA_Inventories_3,162) (Input_Inventories.Pre_1990_PA_Inventories.Pre_ inventories_3,161) +Getcolumn intories.Pre_1990_PA_Inventories_3,162) (Input_Inventories.Pre_1990_PA_Inventories.Pre_ inventories_3,164) +Getcolumn intories.Pre_1990_PA_Inventories_3,166) (Input_Inventories.Pre_1990_PA_Inventories.Pre_ inventories_3,164) +Getcolumn intories.Pre_1990_PA_Inventories_3,166) (Input_Inventories.Pre_1990_PA_Inventories.Pre_ inventories_3,164) +Getcolumn intories.Pre_1990_PA_Inventories_3,166) (Input_Inventories.Pre_1990_PA_Inventories.Pre_ inventories_3,164) +Getcolumn intories.Pre_1990_PA_Inventories_3,166) (Input_Inventories.Pre_1990_PA_Inventories.Pre_ inventories_3,164) +Getcolumn intories.Pre_1990_PA_Inventories_3,170) (Input_Inventories.Pre_1990_PA_Inventories_Pre_ inventories.Pre_1990_PA_Inventories_3,170) (Input_Inventories.Pre_1990_PA_Inventories_Column(Input_Inventories.Pre_ inventories_3,172) +Getcolumn(Input_Inventories.Pre_ inventories_3,173) +Getcolumn	

Transparency in GoldSim Coding

Tools at your disposal:

Use *aliases* for exposed outputs from Localized containers.

The aliases should be clear and have unique names.

urce Properties : Waste_System		23
Definition Graphics Information	Exposed Outputs	
Output	Alias 🔺	
\Transport\\TotalActivity	TotalActivity_Waste_RCRA	
\Transport\\Waste_Cell19.Wat	WaterAdv_Waste_to_Liner_RCRA	
\Transport\\Waste_Cell19.Wat	WaterDiff_Waste_to_Liner_RCRA	
\Transport\\Radon_EP_Ratio	Radon_EP_Ratio_RCRA	
\Transport\\Waste_Cell19.Air_t	AirDiff_Waste_to_Liner_RCRA	
\Transport\\Waste_Cell19.Air_t	AirDiff_Waste_BottomUp_RCRA	
\Transport\\Waste_Cell02.Dire	Biotic_Waste02_to_TopSoil_RCRA	
\Transport\\Waste_Cell03.Dire	Biotic_Waste03_to_TopSoil_RCRA	
\Transport\\Waste_Cell04.Dire	Biotic_Waste04_to_TopSoil_RCRA	
\Transport\\Waste_Cell05.Dire	Biotic_Waste05_to_TopSoil_RCRA	
\Transport\\BioticUpwardCT	BioticUpwardCT_RCRA	
\Transport\\Waste_Cell02.Wat	WaterDiff_Waste02_to_Waste01_RC ▼	
I		
	OK Cancel	Help

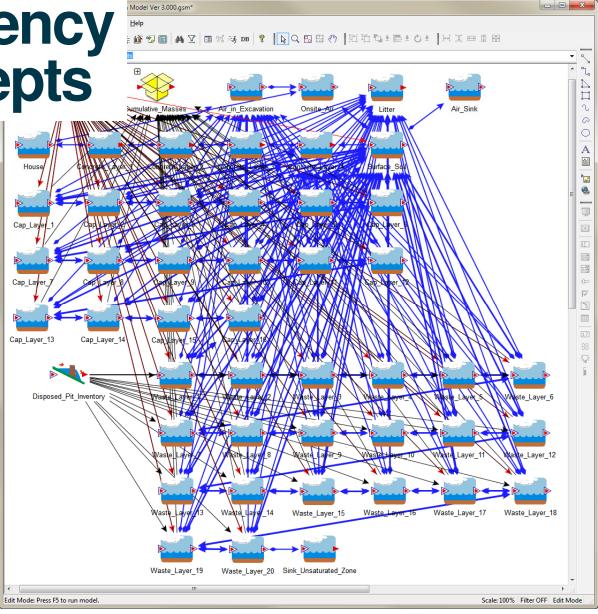
Transparency in GoldSim Coding

Tools at your disposal:

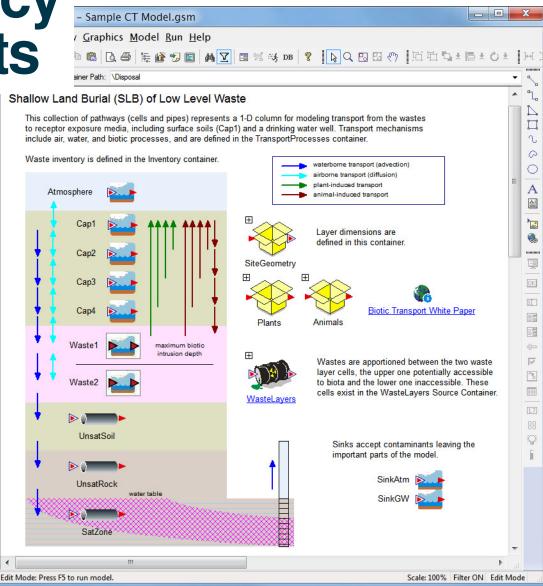
Use *Sum* elements for organizing summations.

(This would have helped the earlier code example.)

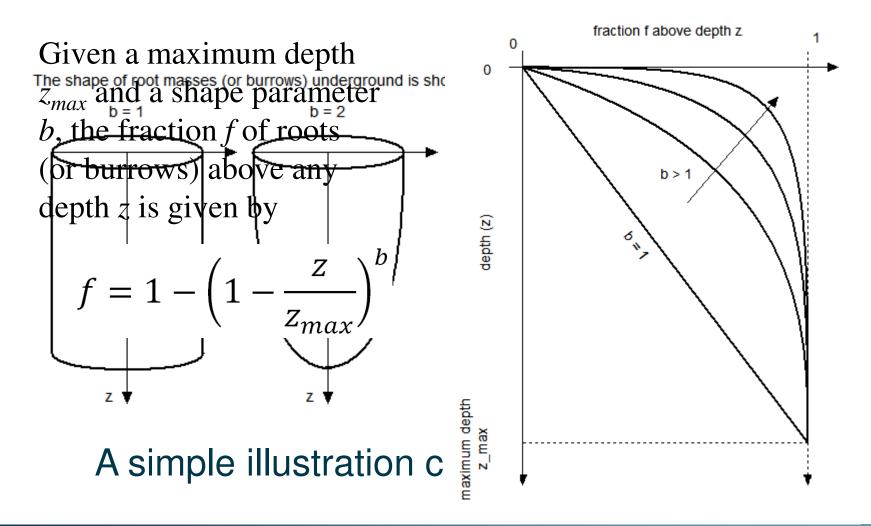
Sum Properties : BioticUpwardCT
Definition
Element ID: BioticUpwardCT Appearance
Description: Total contaminant transport to TopSoil by burrow excavatio
Display Units: g/yr Type Vector[Species]
Definition
Input(s)
ET_Cover_Cell01.Direct_transfer_rate_to_TopSoil_Cell01
ET_Cover_Cell02.Direct_transfer_rate_to_TopSoil_Cell01
ET_Cover_Cell03.Direct_transfer_rate_to_TopSoil_Cell01 ET_Cover_Cell04.Direct_transfer_rate_to_TopSoil_Cell01
ET_Cover_Cell05.Direct_transfer_rate_to_TopSoil_Cell01
ET_Cover_Cell06.Direct_transfer_rate_to_TopSoil_Cell01
FT Cover Cell07 Direct transfer rate to TopSoil Cell01
Add Input Delete Input
Save Results
OK Cancel Help



Transparency in GoldSim Coding

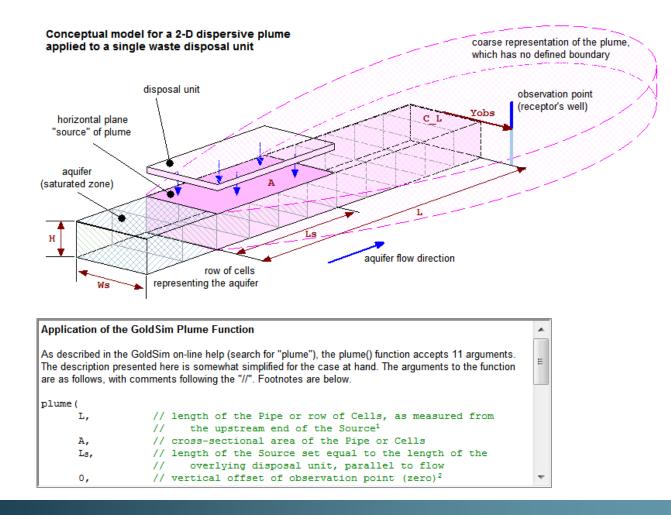

Don't cram too much into an expression or property.

Cell Pathway Properties : Cap_Layer_3	Cell Pathway Properties : ET_Cover_Cell02
Definition Inflows Outflows Diffus Element ID: Cap_Layer_3 Hard to follow	Definition Inflows Outflows Diffusive Element ID: ET_Cover_Cell02 Easy to read
Description: Cell representing cap layer 3. Media in Cell	Description: Cell representing part of the ET Cover Media in Cell
Medium Amount F H S Water Erosion_Model.Updated_Layer_Thickness_	Medium Amount F H Water CellWaterVolume_Local Air CellAirVolume_Local ET_CoverMaterial CellSolidMass_Local Add Medium Delete Medium Cell Inventory Initial Inventory Discrete Changes:
Save Masses in Pathway Output Precipitated Mass Final Values OK Cancel	Save Masses in Pathway Output Precipitated Mass Final Values OK Cancel


A mismash of elements on the page is not useful to anyone trying to understand the model.

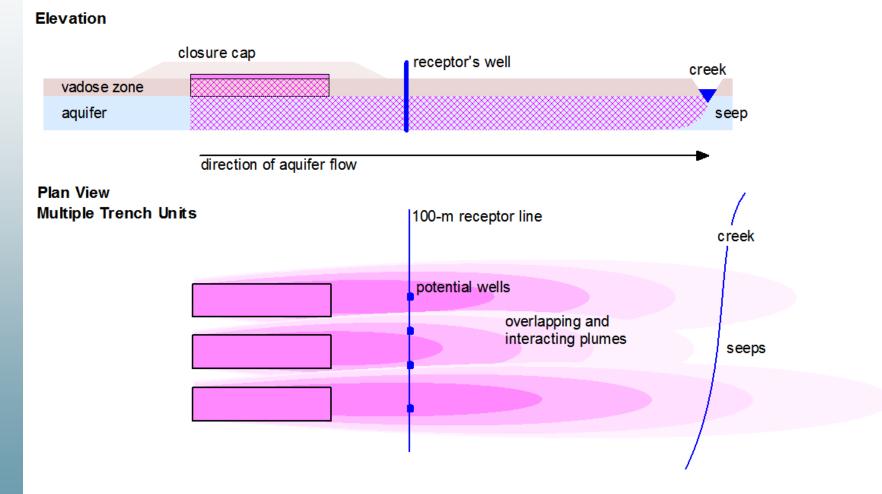
Use the drawing tools and a logical arrangement of elements shows what is going on in the model.

Plant root and burrow volume depth function

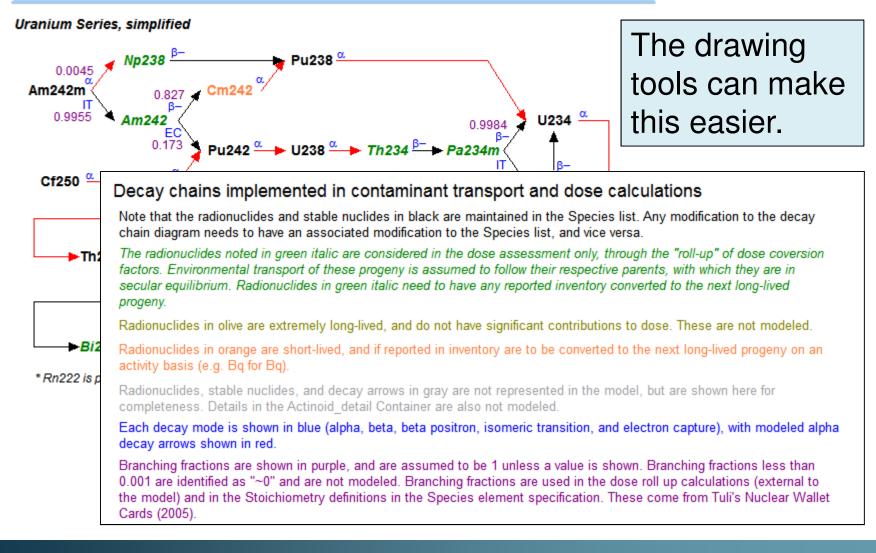


Performance and Risk Assessment Community of Practice • December 2015

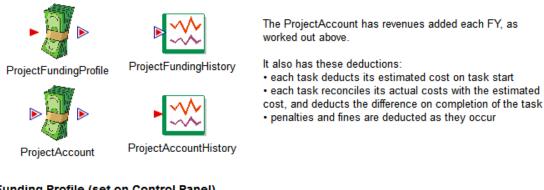
22


Modeling tools can be described in the model itself:

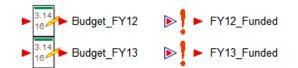
Performance and Risk Assessment Community of Practice • December 2015


23

	Species	}		Appearance				
Description:	Radionu	uclides inclu	ided in contaminar	nt transport				The Species
Specify decay:	Half-live	es		 Species 	set	order	ring: Weight, ascending 🔹	
Display:	Modele	d species		 Min hall 	-life	to sh	ow: 0 yr	element may be
Auto include IC		المرا بالتربي من	K (1)			10	12	
	.KP daugn	ters with ha	f-lives >= 1 yr	and	<=	ie+u	112 уг	fundamental to
Species List			Number of Mod	leled Species : 11	0			
Include	Row #	ID	Weight	Half-Life	1	R	Modeled daughters (skipped intermediates)	contaminant
		Tb158	158 g/mol	HalfLife[Tb158]	\boxtimes			
	27	Tc99	99 g/mol	HalfLife[Tc99]				trancnart
	76	Th228	228 g/mol	HalfLife[Th228]			<u>.</u>	transport
	77	Th229	229 g/mol	HalfLife[Th229]				
	78	Th230	230 g/mol	HalfLife[Th230]	\square	\square	Ra-226	modeling, but it
	80	Th232	232 g/mol	HalfLife[Th232]		\boxtimes	Ra-228	mouting, but it
	11	Ti44	44 g/mol		\boxtimes			
	65	TI204	204 g/mol	HalfLife[Tl204]	\boxtimes	\boxtimes		can be a challenge
	58	Tm171	171 g/mol	HalfLife[Tm171]		\boxtimes		can be a challenge
	81	U232	232 g/mol	HalfLife[U232]	\boxtimes	\square	Th-228	
		U233	233 g/mol		\square	\square	Th-229	to interpret.
	82				5 7	57	Th-230	
		U234	234 g/mol	HalfLife[U234]	\boxtimes	\boxtimes		
	83	U234 U235	234 g/mol 235 g/mol		\boxtimes	\boxtimes	Pa-231	
	83 84			HalfLife[U235]	\boxtimes	\boxtimes	Pa-231 Th-232	


Change Log

onange Log				
Change log: (Tabs are enter	ed as Ct	rl+Tab).		•
JT John Tauxe RP Ralph Peror KC Kate Catlet				
date	ver	init	description	
12 Oct 11 by Bill Dornsife	0.001 (WCS),	JT Abhishe	 Model-building begins, acknowledging previous work on the WCS LLW Model k Singh (Intera), Gary Merrell (URS Corp.), and John Tauxe (Neptune and Co.) 	
24 Oct 11 dose container.	Implem	RP nent strue	 Work on N&Co dose model begins. Integrate CWF and FWF within a single cture shown in receptor diagram_influences and well dose diagram_influences. 	
		For this	 New model structure (including Switches for exposure conditions) and pathways interim Dose_Assessment container, the scenarios and receptors used in the TCEQ have been retained. 	5
28 Oct 11	0.003	JT	Custodianship assumed by JT. Begin work on v0.003.	
21 Nov 11	0.003	RP	 Custodianship assumed by RP. Update dose model to include ranching and oil drilling scenarios while retaining 	
receptors from t	the Licer	ise Appli	 cation PA model. Restrict use of saline water from deeper aquifers (600 ft) to cattle. Add all particulate inhalation and external DCFs. 	
concrete failure	for the o	containm	 Added a Chronology container for timed events (loss of institutional control and ent system). 	
21 Nov 11	0.003	JT	Custodianship assumed by JT.	
28 Nov 11 actinide decay	to short-	JT lived prog	 Minor revision to decay chains illustration to list Sn126 in the category of non- geny that are modeled in dose assessment. 	
19 Dec 11 Jan/Feb 12 and FWF conta			 Added initial structure for stochastic Kd values. Extensive reorganizational revisions, including completely reorganizing the CWF mmon elements out of them, and making extensive use of the UZ_Units array for lations 	


Project budget and accounting

The user can specify the funding profile, which constitutes annual increases to the project account. Costs are deducted from the project account as tasks start and complete.

Main Project Account

Funding Profile (set on Control Panel)

Estimated expenses and allocation priorities

Estimated costs for each task are provided here. Each task must wait until sufficient funding is available before starting, and actual costs are reconciled with estimates on task completion.

Funding allocations are determined as annual spending rates.

The allocation of funds from the top Project level down to the individual tasks takes place hierarchically. This top level allocator takes the entire project budget (ProjectAccount) and allocates to the main activities. Each of those activities similarly allocates its share of the funds it was provided to its tasks, and so on.

Waste Characterization Funding

Public Involvement Funding

Compliance Activities Funding

Public Involvement Activities Funding

Performance and Risk Assessment Community of Practice • December 2015

Readability

Traceability Within the Model

GoldSim Pro	– PA Model.gsm		
Eile Edit View	<u>G</u> raphics <u>M</u> odel <u>R</u> un <u>H</u> elp		
L 🖻 🖉 🖌 🛛	e 🛍 🖪 🖶 🎼 💕 🞾 🗐 🖊 🔽 🗉 % 🤫 I	5 DB 💡 🚺 🖓 🖸 🖽 🖞 ± 🖹 ± 🖒 ±	
Links to element Fi	neCobbleMix 📃	Links from element FineCobbleMix	X
Links			
Select any link in the list to	display detailed information about the link.	e. Select any link in the list to display detailed information about the link.	
From Output	To Input	From Output To Input	
BulkDensity_FineCobble		FineCobbleMix:Density CapCell_InertMass.[Cap04]	
Porosity_FineCobbleMix	-	FineCobbleMix:Porosity CapCell_InertPorosity.[Cap04]	- 1
Water	FineCobbleMix.Reference Fluid	FineCobbleMix Cap_04.FineCobbleMix FineCobbleMix Cap_04.FineCobbleMix	- 1
		et FineCobbleMix Cap_04.FineCobbleMix FineCobbleMix:Density CapCell_InertMass.[Cap04]	- 1
		Ve FineCobbleMix:Porosity CapCel_InertMass.[Cap04]	- 1
		Ve FineCobbleMix Cap 04.FineCobbleMix	- 1
Link Details		Link Details	
Output Element: Mater	rials\FineCobbleMix Properties\BulkDensity FineCobbleMix	lix Output Element: <u>Materials</u> FineCobbleMix	
Input Element: Mater	rials\FineCobbleMix	Input Element: \Disposal\ClassASouthCell\TopSlope\CapLay\CapCell InertM	lass
Output Type: Value	Units: g/cm3	Output Type: Value Units: kg/m3	
Order: Scalar	Link Type: Normal	Order: Scalar Link Type: Normal	
Ĺ	OK Cancel Help	telp OK Cancel H	lelp

Performance and Risk Assessment Community of Practice • December 2015

Ľ

Traceability Outside the Model

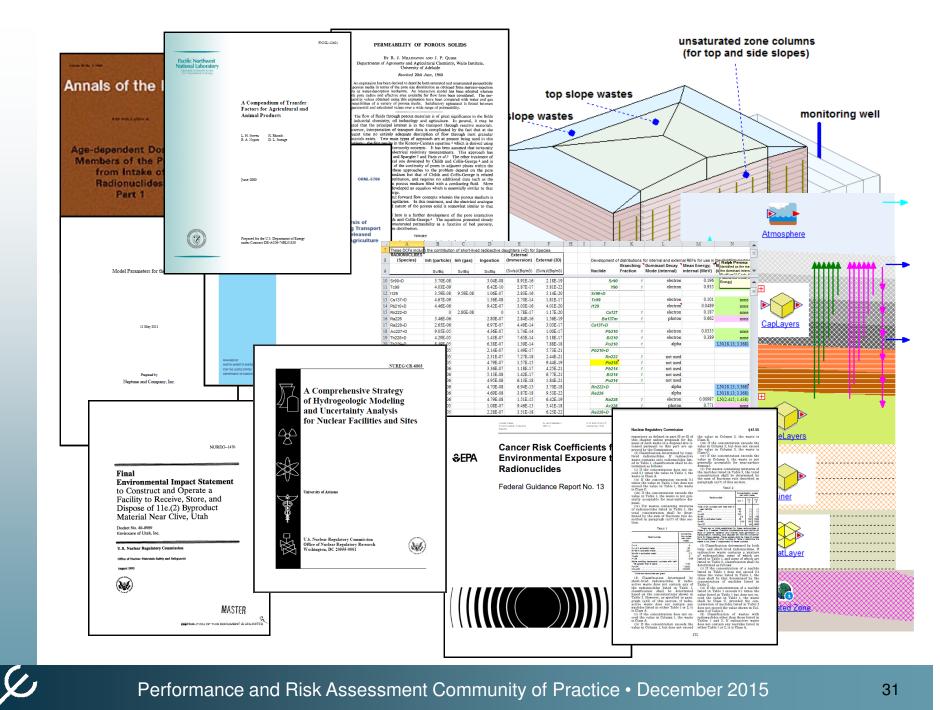
Layer	Material	Thickness	n	θ _{fc}	θ _{wp}	Available Moisture	Θ_{i}	Ks	Layer Type	Size Range	Material Description	Notes
1		(inches)	(vol/vol)	(vol/vol)	(vol/vol)	(vol/vol)	(vol/vol)	(cm/sec)	n/a	(inches)	n/a	
Layer 1	Type-B Rip Rap	18	0.190	0.024	0.007	0.017	initialized to ss	42	vertical percolation	0.75-4.5	1.25 inches	Size is nominal diameter
Layer 2	Type-A Filter (upper)	6	0.190	0.024	0.007	0.017	initialized to ss	42	vertical percolation	0.08-6.0	Coarse Sand - Fine Cobble	
Layer 3	Sacrificial Soil	12	0.31	0.2	0.025	0.175	initialized to ss	4.00E-03	vertical percolation	<0.75	Silty Sand and Gravel	Placed at 4x10 ⁻⁴ cm/sec; freeze/thaw reduces K to 4x10 ⁻³ cm/sec.
Layer 4	Type-B Filter (lower)	6	0.28	0.032	0.013	0.019	initialized to ss	3.5	lateral drainage	0.2-1.5	Coarse Sand -Fine Gravel	
Layer 5	Upper Radon Barrier	12	0.430	0.390	0.28	0.11	0.43	5.00E-08	barrier soil	n/a	Clay	
Layer 6	Lower Radon Barrier	72	0.430	0.390	0.28	0.11	0.39	1.00E-06	vertical percolation	n/a	Clay	
Layer 7	Waste	100	0.437	0.062	0.024	0.038	initialized to ss	5.00E-04	vertical percolation	n/a	Sand	Unit thickness for waste, Model is insensitive to waste thickness variation.
Layer 8	Clay Liner	24	0.430	0.390	0.28	0.11	0.43	1.00E-06	barrier soil	n/a	Clay	

TABLE 7. HELP INFILTRATION MODEL LAYERS AND MATERIAL PROPERTIES

n = Porosity θfc = Field Capacity θwp = Wilting Point θi = Initial Moisture Content

K. = Saturated Hydraulic Conductivity

B1 = Value for initialized steady-state moisture content are given in the model output files.


Available Moisture: = Moisture available to be evaporated is only applicable in the upper 18 inches of the model

Engineered material properties

Engineered materials are in a variety of forms serving various purposes. These are used in the construction of the cap (top slope and side slope) and liner layers.

Rip Rap is used to construct the uppermost layer: Armor. It quickly becomes infilled with Loess. The Rip Rap itself is assumed to be an inert material.

Utility: Input Dashboards

RCRA Landfill Waste Concentration Limit Determination Control Panel

DISCLAIMER

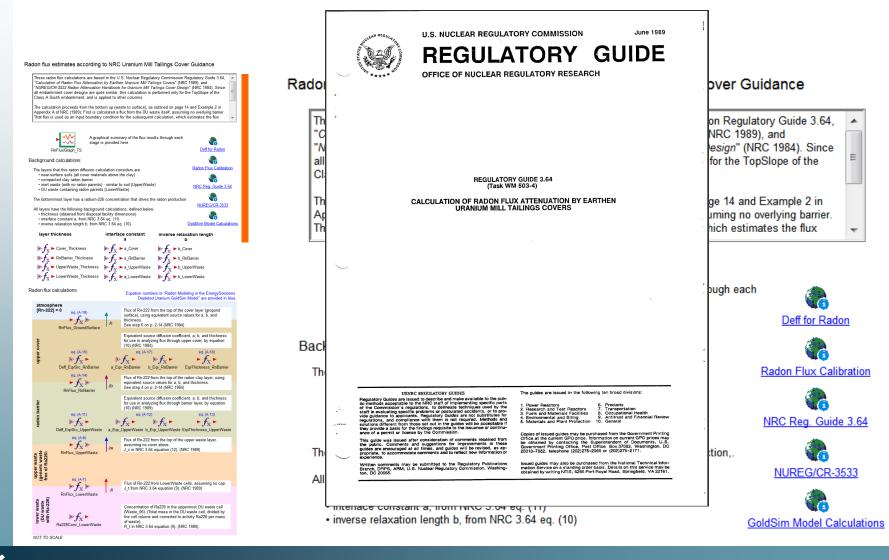
iventory activity concentrations of ne RCRA time of compliance. The	specific radionuclides	that correspon		I doses to any receptor within
RCRA WCL Setup Set RCRA WCL Determination Mode While in RCRAWCL mode, standard modeling is disabled Set desired time of compliance (TOC): Set desired dose limit: Set clay fill thickness 0.01 ft	Select white	hdfill Layout — ch RCRA Cells	I J K L M Clay fill thickness: W	RCRA Layout Diagrams N O P Q R S 'aste area: Waste volume: 3906.7 m2 934911 m3
RCRA WCL Determination Settin Select the decay chain member for which the WCL is to be determined. For most radionuclide Species, there are no modeled parents or progeny, and determination of the WCL corresponding to the specified does limit is Decay Chains Reference Diagram	s Fe60 > Co60 Zr93/Mo93 > Nb93m Pm146 > Sm146 Sm145 > Pm145 Po209 > Pb205 Actinium Series Thorium Series Uranium Series Neptunium Series	Co60 ▼ Zr93 ▼ Sm146 ▼ Pm145 ▼ Pb205 ▼ Ac227 ▼ Ra228 ▼ Pb210 ▼ Th229 ▼	Copy this vector enter Edit Mode. paste into this vect Rerun model. Check RCRAWCL	 ntil estimated WCLs 0.01 Run the model (F5), copy (ctrl C) the contents of this vector, set to Edit Mode (F4) paste (ctrl V) the vector values into this one, and run the model again. Results (button below) to see the which radionuclide in the decay

Performance and Risk Assessment Community of Practice • December 2015

Ø

Utility: Results Dashboards

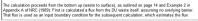
RCRA Landfill Waste Concentration Limit Determination Results

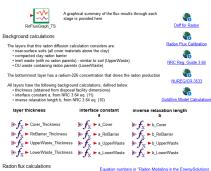

DISCLAIMER

Results of the RCRALandfill WCL determination are organized in several tables, organized by radionuclide.

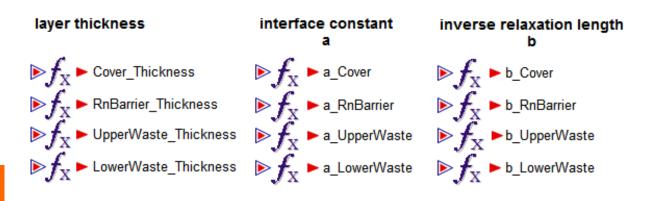
H3 to C	Co60 Ni59	to Cd113m Sr	n121m to Sm151	Eu	150	to TI	204		Pb	205	to Pa231	U232 to Pu24	4 Am241 to Cf	252
	andfill Inventory	Concentration F	Results											
				n	nax. e	ехро	sed	rece	ptor*	•	ratio of ma	ax peak dose to		
nuclide*	activity conc.	o disposed act.	max. peak dose	AR	NR	SR	ow	F	Н	R	inventory	concentration	for dose limit (or SA	()
Pb205	0 pCi/g	0 Ci	1.32e-13 mrem/yr					đ			0	(mrem/yr)/(pCi/g)	0 (pCi/g)	
Pb210	0 pCi/g	0 Ci	3.28e-24 mrem/yr					S			0	(mrem/yr)/(pCi/g)	0 (pCi/g)	
Bi207	40297 pCi/g	69677 Ci	1 mrem/yr				ഷ്				2.482e-5	(mrem/yr)/(pCi/g)	40289 (pCi/g)	
Bi210m	21870 pCi/g	37815 Ci	1 mrem/yr				Ľ				4.573e-5	(mrem/yr)/(pCi/g)	21865 (pCi/g)	
Po208	5.93e14 pCi/g	1.03e15 Ci	0 mrem/yr								0	(mrem/yr)/(pCi/g)	5.93e14 (pCi/g)	Ś
Po209	1 pCi/g	1.73 Ci	0 mrem/yr								1.321e-13	(mrem/yr)/(pCi/g)	7.57e12 (pCi/g)	
Rn222	0 pCi/g	0 Ci	7.5e-24 mrem/yr	ď							0	(mrem/yr)/(pCi/g)	0 (pCi/g)	
Ra226	0 pCi/g	0 Ci	3.24e-25 mrem/yr					ൾ			0	(mrem/yr)/(pCi/g)	0 (pCi/g)	
Ra228	0 pCi/g	0 Ci	1.83e-21 mrem/yr					ഷ്			0	(mrem/yr)/(pCi/g)	0 (pCi/g)	
Ac227	0 pCi/g	0 Ci	5.08e-23 mrem/yr					S			0	(mrem/yr)/(pCi/g)	0 (pCi/g)	
Th228	0 pCi/g	0 Ci	0 mrem/yr								0	(mrem/yr)/(pCi/g)	0 (pCi/g)	
Th229	0 pCi/g	0 Ci	2.81e-16 mrem/yr	ď							0	(mrem/yr)/(pCi/g)	0 (pCi/g)	
Th230	0 pCi/g	0 Ci	1.12e-24 mrem/yr	ď							0	(mrem/yr)/(pCi/g)	0 (pCi/g)	
Th232	0 pCi/g	0 Ci	1.5e-22 mrem/yr	ď							0	(mrem/yr)/(pCi/g)	0 (pCi/g)	
Pa231	0 pCi/g	0 Ci	5.41e-23 mrem/yr					ď			0	(mrem/yr)/(pCi/g)	0 (pCi/g)	
	Po209 >	Pb205 Actinium	Series Thorium	Seri	es (Jrar	niun	n Se	ries	Ne	eptunium Se	ries Dec	cay Chains Diagram]
** Recept	tors: AR adjacent	t resident, NR nea	arest resident, SR	on-s	site i	resi	dent	t, OV	V oil	lfield	l worker (dri	ller), F farmer, H	I hunter, R rancher	
Pb205 0 pC/g 0 C 1.32e-13 mrem/yr 0 0 (mrem/yr)/(pCi/g) 0 (pC/g) Pb210 0 pC/g 0 C 3.28e-24 mrem/yr 0 0 (mrem/yr)/(pCi/g) 0 (pCi/g) Bi207 40297 pCi/g 69677 Ci 1 mrem/yr 0 0 0 (mrem/yr)/(pCi/g) 40289 (pCi/g) Bi210m 21870 pCi/g 37815 Ci 1 mrem/yr 0 0 0 (mrem/yr)/(pCi/g) 21865 (pCi/g) Po208 5.93e14 pCi/g 1.03e15 Ci 0 mrem/yr 0 0 0 (mrem/yr)/(pCi/g) 5.93e14 (pCi/g) 3.32te-5 (mrem/yr)/(pCi/g) 5.93e14 (pCi/g) 3.32te-5 (mrem/yr)/(pCi/g) 7.57e12 (pCi/g) 3.32te-13 (mrem/yr)/(pCi/g) 7.57e12 (pCi/g) 3.32te-13 (mrem/yr)/(pCi/g) 0 (mrem/yr)/(pCi/g) 0 (pCi/g) 3.32te-12 (pCi/g) 3.32te-13 (mrem/yr)/(pCi/g) 0 (pCi/g) 3.32te-12 (pCi/g) 3.32te-12 (pCi/g) 3.32te-12 (pCi/g) 3.32te-12 (pCi/g) 3.32te-12 (pCi/g) 3.32te-13 (mrem/yr)/(pCi/g) 0 (pCi/g) 3.32te-13 (mrem/yr)/(pCi/g) 0 (pCi/g) 0 (pCi/g) 3.32te-13 (mrem/yr) 0 (mrem/yr)/(pCi/g) 0 (pCi/g) 0 (pCi/g) </td														

Bringing it Together


Performance and Risk Assessment Community of Practice • December 2015

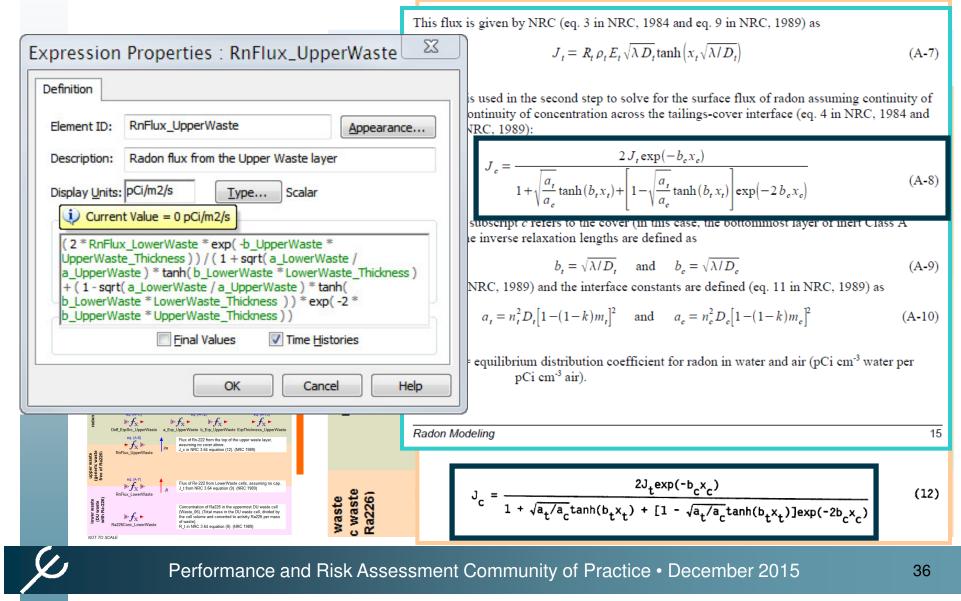

34

Bringing it Together


Radon flux estimates according to NRC Uranium Mill Tailings Cover Guidance

These north flux calculations are based in the U.S. Nackar Regulatory Commission Regulatory Guide 3.64, Calculation of Robot Flux Attenuation by Earlier University MIT Tailogs Convertigent (INC 1989) and and the second secon

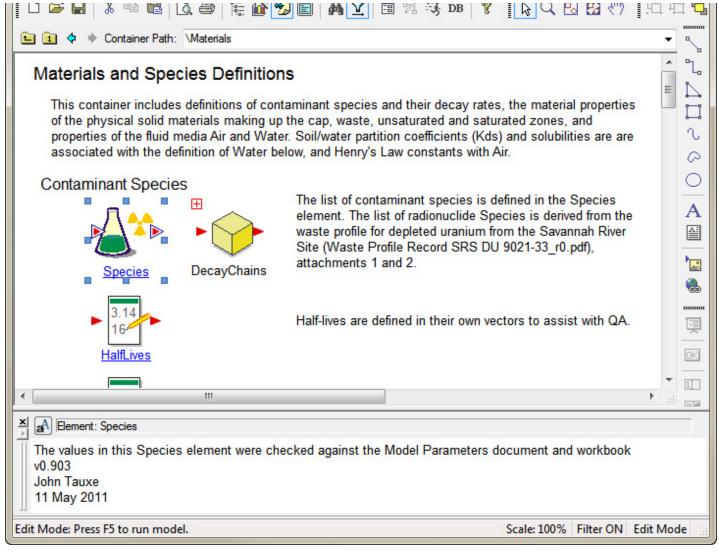
adon flux calculations TRFR=221 = 0 TRFR=



Sometimes simply organizing the appearance of calculations can help in communicating their role.

NOT TO SCALE

Bringing it Together



QA Tools in GoldSim

- Use the tools provided within GoldSim for QA:
- Note Panes
- Versioning
- Version change notes

The Note Pane

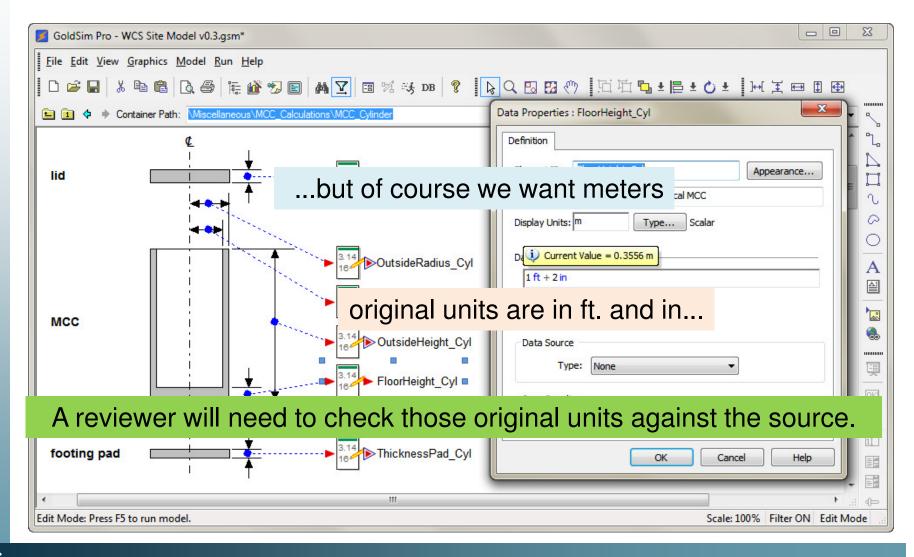
Model Versioning

	🕺 D:\ES\energysolutions\DU\GoldSim\GoldSim Version Difference.txt - Notepad++	х
Version Manager	File Edit Search View Format Language Settings Macro Run TextFX Plugins Window ?)
	i 🕞 🖴 🔚 🐚 💫 🐇 🐚 🐚 Ə 🖒 # 🍢 🍳 👒 💁 🔂 1 🗐 🗐 🗩 🕨 🔤 🕿 🔺 🔻 🗵	
Version(s)	new 1 🔄 GoldSim Version Difference.txt	
The Version Manager to specify a reference		-
	84 [Begin Element 'UpperRnBarrierKsat_Nat']	^
Click 'Create Version' t marking the version's	85 Path: \Materials\UpperRnBarrierClay_Properties\	
	86 Type: Expression 87 Changes:	
#	87 Changes: 88 The element was added.	
Changes fo	89 A description was added to the element.	
1.200	90 After changing the element the following note was attached: 'revised for HYDRUS ET	
1.101 Content:	cover modeling implementation	
1.100 Chang	91 v1.2	
1.002 The eler	92 8 May 2014	
Create A descr	93 Kate Catlett'	
After ch	94	
Version D modelin	95 [Begin Container 'Unit4_Properties']	
v1.2	96 Path: \Materials\	
User Nan 8 May 2 Kate Ca	97 Changes:	
Descripti	98 -none-	
This rele	99 Element(s) added:	
design)	100 'log_vG_Alpha' (Type: Stochastic)	
SIBERIA	101 'vG_Alpha' (Type: Expression)	
0-1	102 'log_vG_n' (Type: Stochastic) 103 'vG n' (Type: Expression)	
Options	103 'vG_n' (Type: Expression) 104	
📃 Sho	105 [Begin Element 'log vG Alpha']	
Sho	106 Path: \Materials\Unit4 Properties\	
E Sho	107 Type: Stochastic	
	108 Changes:	
	100 The element was added	-
	Normal text file nb char : 163724 nb line : 4668 Ln : 1 Col : 1 Sel : 0 Dos\Windows ANSI IN	IS

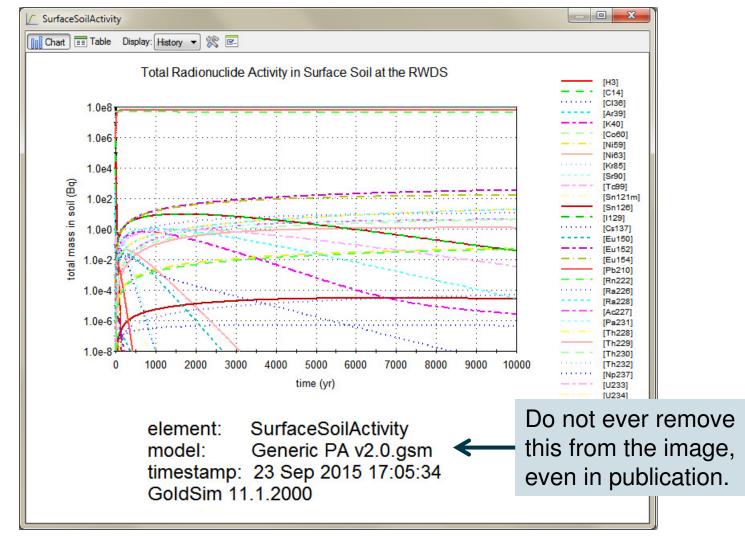
More GoldSim QA Tricks

Additional QA tricks:

- Cloned elements
- Referenced units
- Graph footer information



Clones for QA


If an equation is used in more than one place, cloning it guarantees that it will be the same for all clones. That makes QA easier.

Expression Properties : GrassFracTop	Expression Properties : GrassFracTop	23
Definition Clones	Definition Clones	
Element ID: GrassFracTop Appearance	This element has the following clones:	
Description: Fraction of grass roots above top of layer	Clones	Go
	\Disposal\Plants\Cap3Uptake\GrassFracTop	<u></u>
Display Units: Type Scalar	\Disposal\Plants\Cap4Uptake\GrassFracTop	m,
	\Disposal\Plants\Waste1Uptake\GrassFracTop	m,
Equation		
if(DepthTop >= GrassData.MaxDepth, 1, 1- (1 - DepthTop / GrassData.MaxDepth)^GrassData.b) Save Results Final Values Time History OK Cancel	OK Cancel	Help

Units from References

Run Stamps for Traceability

