Meeting the "Applied" Accuracy Needs of Energy Metering

Brent Protzman, Ph.D.

Manager – Energy Information & Analytics

Lutron Electronics

What is "Applied" Accuracy?

- NOT worst case accuracy of meter
- NOT the accuracy as a function of input value

Working definition:

Average accuracy a user can expect to achieve on the <u>desired measurement</u> that includes common load types, typical input values, and aggregation across time and measurements

- <u>Desired measurement</u> could be:
 - Building Energy
 - Area or Room Energy
 - Fixture **Energy**

Power vs Energy Measurement

Power Measurement

- Instantaneous
- Modify control of system
- Highly usage dependent
- "OFF" state errors has moderate impact on applicability

Energy Measurement

- Time aggregated
- Validate conservation measures
- Somewhat usage dependent
- "OFF" state error has very small impact on applicability

Accuracy based on True Load Types

Accuracy based on True Load Types

Typical **Power** Output of Lighting Systems

Relative **Energy** Use (based on power level)

Achieving Applied Accuracy: Methodology

True Load Accuracy Distribution Typical Use

Applied Accuracy

Applied Accuracy Cost: Fixture Meter Example

	Added Fixture Cost	Applied Accuracy
Meter 1	\$5.00 per fixture	0.8%
Meter 2	\$2.00 per fixture	2.1%
Calculated (specific driver)	\$0.00 per fixture	2.0%
Calculated (generic driver)	\$0.00 per fixture	4.9%

High applied accuracy: 2% Low applied accuracy: 5% Accelerating Adoption of Meters

- Standards for validating metering accuracy including:
 - What load type(s) used in testing
 - If/how to weight by applied power level usage
 - When can calculated values be allow (e.g. known ballast curve?)
- Methods for labeling applied meter performance
- Sub-metering requirements for existing buildings
- Case studies of usage of metered data

Accelerating Adoption of Connected Lighting

- Tiered rebate/incentive programs for systems
 - Advanced (basic energy strategies)
 - Networked (metering, easy system modifications, etc.)
 - Integrated (multi-system performance optimization)
- Drive Networked and Integrated standard/code requirements
- Case studies of integrated building systems
 - Energy performance
 - Operational efficiencies
 - Occupant well being

Summary

- Different end uses have different accuracy needs
- Load type matters in meter testing
- Accuracy rating does not indicate accuracy in operation
- Calculated power/energy can be fairly accurate when done right
- Standards are needed to validate metering capabilities