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INTRODUCTION

(a) Modular SC Wall

# Project focuses on the effects of
accident thermal conditions on the
seismic performance of:

a) Innovative steel-plate composite
SC walls, and

b) Conventional reinforced concrete
RC walls.
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MOTIVATION

+ Steel faceplates are directly exposed to elevated
temperatures resulting from accident thermal
conditions. The resulting differential temperatures and
nonlinear thermal gradients lead to concrete cracking

+ Potential overstressing of the steel faceplates (primary
reinforcement) during seismic events. Need to address
the effects of accident thermal loading on seismic
performance.

¢ ACI 349 for safety-related RC structures also does not
address the effects of accident thermal loading on
seismic performance of RC walls.

¢ Guidance is needed for regulators, designers, utilities
and NSSS vendors.
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PROJECT OBJECTIVES

¢ Evaluate the seismic performance of structural walls
subjected to accident thermal loading. Parameters:
(1) Wall type: SC and RC,
(i) Maximum accident temperature,
(i) Duration of the accident thermal loading before seismic
(iv) Detalls like reinforcement ratio, clear cover, etc.

¢ Develop and benchmark numerical models for

predicting the seismic performance of structural walls
subjected to accident thermal loading

& Conduct analytical parametric studies to evaluate
effects of wide range of material, geometric, structural
detailing, thermal loading, and seismic loading
parameters including those identified in 1. .
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PROJECT OBJECTIVES (CONT'D)

¢ Develop design guidelines and recommendations for
accident thermal + seismic loading

() Recommendations for calculating design demands, and
(i) Calculating the strength and post-peak response

+ To disseminate this knowledge and information, and
update upcoming design and analysis codes
particularly

¢ ACI 349 App. E
¢ ACl 349.1R
¢ AISC N690 ‘

& ASCE 4 and ASCE 43 to include research findings and
guidelines.
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PROJECT TASKS

¢ Task 1 — Review and Finalization of Parameters
¢ Industry Partners: Westinghouse Electric, AECOM, Bechtel
¢ Status — Complete

¢ Task 2 — Accident Thermal Loading and History

¢ Industry Partners, and Review of DCDs, Public NRC
documents for AP1000, US-APWR, SMRs etc.

¢ Status — Complete

¢ Task 3 — Experimental Investigations of SC and RC Walls

¢ Bowen Laboratory using Specialized Heating and Hydaulic
Equipment .
¢ Status — Ongoing
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PROJECT TASKS

& Task 4. Development & Benchmarking of Models
¢ Using LS-DYNA, ABAQUS, and other software
¢ Status — Ongoing rigorously

¢ Task 5 — Analytical Parametric Studies
¢ Using Parameters from Task 1, and Models from Task 4
¢ Status — Ongoing

¢ Task 6 — Dissemination to Codes / Standards
& ACI 349.1R, AISC N690, ASCE 4/43, etc.
¢ Status - Ongoing
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PROJECT SCHEDULE

¢ Project progressing as planned
& No significant deviations or issues so far

| Yearl ||  Year2 | = Year3
Q1] Q2] Q3] Q#]|Q5]Q6|Q7|Q8|Q9]|Q10/QIll|QI12
Taskl Flnahze arameters -. .--------
| Task 2: Finalize Accident T-t | | Il--------
| Task 3: ExperimentalInv. | | | o
 Task4: NumericalModels | | | | | |
| Task 5: ParametricStudies | | | | || | | [
| Task 6: DesignGuidelines | | | [ | [ | | | |
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ABSTRACT

The Fukushima event of 2011 has highlighted the importance of designing safety-related nuclear facilities
for accident thermal scenarios combined with design basis (safe shutdown) earthquake. While the
probability of both events occurring simultanecusly is low, severe environmental conditions may trigger
accident thermal loading, and subsequent aftershocks, potentially as intense as the main shock, may occur
during the accident thermal event. Current design codes and standards in the United States and abroad
provide little-to-no guidance for inchuding the effects of accident thermal loading on seismic behaviour
(stiffness, strength, ductility or reserve margin) of structures. Prior research has focused on seismic
behaviour or accident thermal loading but not both in combination. This 1s valid for both existing
conventional reinforced concrete (RC) and modern steel-plate composite (SC) structures.

The authors have initiated a research project focussing on the effects of accident thermal scenarios on the
inplane shear behaviour (stiffness and strength) of SC and RC wall structures. This paper presents the
initial findings from the project including: (i) typical temperature-time (7-f) curves for containment
internal structures in pressurized water reactors, (ii) thermal gradient histories that develop through the
concrete thickness, (i11) concrete cracking due to the severe pradient and internal restraint, (iv) inplane
shear behaviour of the wall afier concrete cracking, and (v) effects of external restraints on the in-plane
shear behaviour. The paper presents these findings related to both RC and SC walls, which are being used
to develop the test mairix and parameters to be included in the experimental investigations that will be
conducted in the next phase of the project.

b
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ACCIDENT THERMAL LOADING

+ Typical accident temperature-time histories for the CIS of
nuclear power plants (NPPs) are identified using envelopes
of T-t histories from publicly available Design Control
Documents (AP1000, US-APWR).
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BENCHMARKING OF PRELIMINARY MODELS

Finite element models were benchmarked using results from Sf
wall experiments conducted in Japan by Ozaki et al. (2004).

¢ Three unheated specimens: : (0=3.2%), and

¢ Two heated specimens: (0=2.3%) and S400TH (p0=4.5%)
¢ Same overall dimensions (47.2 in. x 47.2 in. X 7.87 In.)
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BENCHMARKING OF PRELIMINARY MODELS

¢ Layered shell finite element models were used to benchmark
the numerical models.

¢ Sequentially coupled thermal-mechanical analysis
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BENCHMARKING OF PRELIMINARY MODELS

+ Steel behavior was modeled using multi-axial plasticity theory
¢ VVon Mises yield surface
¢ Associated flow rule
¢ Isotropic hardening

¢ Thermal properties and temperature dependent stress-strain
curves according to the Euro code (CEN, 2001)

& Concrete behavior was modeled using smeared crack theory

¢ Linear Drucker-Prager compression yield surface with associate
flow rule in compression

¢ Crack detection using Rankine criterion

¢ Post cracking behavior was based on fracture energy and
empirical models using CEB-FIB (1990)

¢ Temperature dependent elastic modulus of concrete Iin
accordance with NIST and Eurocode recommendations

(Phan et al. 2010)

p—
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BENCHMARKING OF PRELIMINARY MODELS

& Force vs. shear strain comparisons with test results
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ANALYTICAL PARAMETRIC STUDY

¢ Benchmarked models were used for a combined in-plane she
+ thermal loading scenario.

¢ Four different reinforcement ratio (p=1.5%, 2%, 3%, and 4%)
¢ Three temperature amplitudes (T=150, 300, 450 F)
¢ Rectangular panel of 8 ft. x 8 ft. in height and width, and 4 ft. thic
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MECHANICS BASED THEORY

¢ The in-plane shear strength of SC composite walls
can be estimated as the tri-linear shear force —
strain curve.
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ANALYTICAL PARAMETRIC STUDY
& Representative analysis results. p = 2%
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ANALYTICAL PARAMETRIC STUDY
& Representative analysis results. p = 2%
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ANALYTICAL PARAMETRIC STUDY
& Representative analysis results. p = 2%
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ANALYTICAL PARAMETRIC STUDY
& Implementation of restrain condition.

vV I_ v v




PURDUELE" 2

UNIVERSITY

ANALYTICAL PARAMETRIC STUDY
¢ Representative analysis results for restrained condition.
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ANALYTICAL PARAMETRIC STUDY

& Strength comparisons
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« Typical temperature-time (T-t) curves for containment internal
structures in pressurized water reactors are identified.

« The in-plane shear stiffness and strength of SC walls increase
with increasing reinforcement ratio. The pre-cracking branch
was almost identical for all reinforcement levels.

« The analysis results of this study show that the reinforcement
ratio and temperature amplitude have remarkable influence on
the behavior of SC walls
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« Both shear stiffness and shear strength are reduced at
elevated temperature and this becomes more significant at
high temperature amplitudes (300°F and 450°F).

« The shear stiffness comparisons indicate that the 25% and
50% restraint cases result in similar stiffness as the
unrestrained case, but with strength increases of about 20%
to 40%.

« The tri-linear approach by Varma et al. (2011) can be used to
predict the behavior of SC walls subjected to combined
thermal + in-plane shear loading for most of the SC walll
panel model cases.
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FLANGED SC WALL TESTS IN LITERATURE

Recent work by Japanese Researchers (Kitajima et al. 2015).
1/7 scale SC walls with flange plates tested under accident thermal loading.

¢ 15 =285mm (11.2 in.), t,=2.3 mm (0.09 In.), t, g plate = 22 MM
(0.87 In.)

Test program included six specimens having test parameters of max temperature,
heating duration, initial membrane force and cyclic loading hysteresis.

700 mm x 700
\ mm
(27.61n x 27.6

n)
H/IL=0.5
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FLANGED SC WALL TESTS IN LITERATURE

¢ Recent work by Japanese Researchers (Kitajima et al. 2015).

MNo.2 (RT)

emperature and
1cating duration

Ultimate Strength

Yield Pomts

Deformation Angle

e Test results showed that the ultimate strength reduced by 25% due to the thermal
loading. Also significant reduction (50%) in the initial stiffness.
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FLANGED SC WALL TESTS IN LITERATURE

Numerical Analysis of tests by Kitajima et al. (2015).
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Stiffness, strength and crack patterns of the tested specimen (No. 2) is captured
accurately by numerical modeling.

These benchmarked models are used to verify the behavior of designed specimens
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CONCEPTUAL DESIGN OF PROPOSED SPECIMENS
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PROPOSED EXPERIMENTAL ACTIVITY

¢ Six flanged SC and RC specimens to be tested.
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ABSTRACT

Reinforced concrete walls and slabs in safety-related nuclear facilities are required to be designed for
abnormal load combinations. This paper evaluates the design force demands on safety-related nuclear
structures due to accident thermal loads. Thermal loading conditions and effects of thermal loads and
restraints on structural behavior are discussed. Idealized possible structure geometries for nuclear facilities
are analyzed and the modeling and analysis parameters are briefly discussed. Selected structures are subject
to LEFE and NIFE analysis for idealized accident thermal loads. The demands from LEFE and NIFE
analysis are compared to predict the effectiveness of simple LEFE analysis. The demand to capacity ratio
(DCR) for individual demands are also calculated. Additionally. the paper delves into the effectiveness of
concrete clear cover in reducing the magnitude of stresses due to thermal loads.
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OBJECTIVE

¢ The objective of this research (and paper) is to
propose a consistent methodology that can be used
with LEFE analysis to calculate the reduced design
force demands in typical RC structures subjected to
accident thermal loading

‘AlUN dNpInd “ewlieA "H Nwy ybukdod  GT0Z/8Z/0T
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APPROACH

& Consider typical thermal loads and scenarios in design,
and understand the sources of cracking, yielding etc.

¢ Posit a methodology for calculating the design force
demands using LEFE analysis, reduced stiffness due
to cracking, and linear (or uniform) thermal gradient
through the cross-section

'AlUN 8NpInd ‘eulieA "H Jwy ybukdod  §T0z/82/0T

¢ Consider a range of typical but simple NPP structures
subjected to realistic accident thermal loads
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APPROACH

¢ Develop NIFE models of these simple NPP structures,
while accounting for concrete cracking, steel yielding etc.
and calculate the associate demands

¢ Develop LEFE models of these structures, and use the
posited methodology to calculate the associated
demands

¢ Fine tune the parameters / recommendations for the
posited method so that the design demands are
conservative with respect to the NIFE demands

¢ Contrast the demand-to-capacity ratios for the structure
from the NIFE and LEFE analyses

¢ DETAILS ARE IN THE PAPER, and this presentation is
a brief summary to excite interest and curiosity about .
the work

'AlUN 8NpInd ‘eulieA "H Jwy ybukdod  §T0z/82/0T
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¢ FE analysis performed for three idealized geometries

40 ft.

a) Rectangle b) Circle

'AlUN dnpind ‘ewlep ‘H lwy ‘ybukdoy ST0C/8C/0T

®

H 30 H10.

¢) Plan view of Polygon geometry d) Polygon
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¢ The results from this study and paper have been
used to develop a draft for the next revision of ACI
349.1R (Design for Thermal Loading).

¢ The document is being balloted by the committee,
and we have a long way to go...

+ But, the work will directly benefit the entire industry
for the challenging design situation involving
accident thermal loading
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