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Project Overview 

n Goal, and Objectives 
•  Develop high-efficiency and reliable thermoelectric generators (TEGs) 
•  Demonstrate self-powered wireless sensor nodes (WSNs)  
n Participants 
•  Yanliang Zhang, Boise State University;  
•  Darryl P. Butt, Boise State University;  
•  Vivek Agarwal, Idaho National Laboratory;  
•  Zhifeng Ren, University of Houston. 
n Schedule 01/2015 - 12/2017 
 Year 1 •  Determine and profile WSN power consumption 

•  Select thermoelectric materials with optimal performance  
•  Study irradiation effect on thermoelectric materials 

Year 2 •  Develop a TEG and WSN simulator 
•  Design TEG of sufficient power output  
•  Complete analysis of irradiation effect  

Year 3 •  Fabricate the TEG and test the TEG under irradiation effect 
•  Demonstrate the TEG-powered WSN prototype 
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Background and motivation 

•  TEG is very compact and reliable 
•  Heat sources are very abundant in nuclear 

power plant and fuel cycles 
•  The efficiency of thermoelectric materials 

have undergone tremendous improvement 
in past two decades  
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Accomplishments 

n The team achieved the following three milestones for FY15 
 
• Selected two types of thermoelectric materials with optimal performance  
 
• Performed initial study of irradiation effect on thermoelectric materials 
 
• Established wireless sensor node power requirements  
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•  Bi2Te3 and Half-Heusler are two excellent candidates for power harvesting 
•  Cover broad application temperature range from room temp to 600 oC 
•  Combine relatively low cost, high mechanical strength and thermal stability 

Select thermoelectric materials with 
optimal performances  
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Enhanced thermoelectric efficiency in 
nanostructured materials 

•  Our nanostructured thermoelectric materials have shown 30-50% ZT increases 



7 

Irradiation effect on nanostructured 
thermoelectric materials 

XRD pattern of the irradiated and non-
irradiated p-type half-Heusler  

XRD pattern of the irradiated and non-
irradiated n-type half-Heusler  

•  XRD reveals similar crystal structure before and after 1 MeV proton irradiation 
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Irradiation effect on nanostructured 
thermoelectric materials microstructures 

TEM on irradiated and non-irradiated  
p – type  half-heusler materials 

TEM on irradiated and non-irradiated  
n – type half-heusler materials 

Irradiated Irradiated Non-irradiated Non-irradiated 

•  The similarity of microstructures between irradiated and non-irradiated samples 
suggest no radiation damage under 1 MeV proton irradiation 
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Irradiation effect on macroscale 
thermoelectric materials properties 

•  The Seebeck coefficient and electrical conductivity of half-Heusler 
materials show negligible changes before and after irradiation.  
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Irradiation effect on microscale 
thermoelectric materials properties 

Thermal conductivity map of irradiated bismuth telluride cross section  

Thermal conductivity remains the same across the irradiated 
and non-irradiated region 

Scan thermal conductivity κ and 
Seebeck coefficient α simultaneously 
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Establish wireless sensor node (WSN) 
power requirements  

Battery powered WSN Self-Powered WSN 
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Mathematical Model of WSN Power 
Consumption 

n A rigorous mathematical model 
based on state transition 
probabilities and stochastic 
theory is developed 
•  To compute expected energy 

consumed and the variance of 
the energy consumed by a WSN 

n The model considers both WSN 
and network level factors like 
packet error rate, number of 
retransmission attempts, and 
latency 

S3

S0 S1i

S1r

S2

S1e

1 α β αβ− − +

1

α(1 )α β−

1

11

1

State Description 

SLEEP state: No activity 

ACTIVE state: No events 

ACTIVE state: Sensing event alone 

ACTIVE state: Receives relay event alone 

ACTIVE state: Processing of events 

ACTIVE state: Transmission of information 
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The stochastic operation of a WSN  
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Establish wireless sensor node (WSN) 
power requirements  

Wi-Fi ZigBee 

Duty  Cycle =
TA

TA +TS0
TA

TS0

Active time period during which a wireless sensor node performs sensing, processing, and transmission 

Low energy state time period during which a wireless sensor node remains dormant  

α Event occurrence probability 

We focused on two wireless communication protocols:  
IEEE 802.11 – WLAN / Wi-Fi 
IEEE 802.15.4 – ZigBee 
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Technology Impact 

n Impact on overall NE mission and the nuclear industry 
•  Address critical technology gaps in monitoring nuclear reactors and fuel cycle.  

•  Enable self-powered WSNs in multiple nuclear reactor designs as well as spent 
fuel storage facilities.  

•  Cost savings by eliminating cable installation and maintenance.  

•  Significant expansion in remote monitoring of nuclear facilities. 

•  Significantly improve sensor power reliability and thus safety in nuclear power 
plants and spent fuel storage facilities. 
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Conclusion and future work 

n Two high-performance thermoelectric materials have been selected 
for this project. 

n Initial radiation analysis on nanostructured thermoelectric materials 
show no noticeable changes with proton irradiation. 

n WSN power consumption has been established based on two 
wireless communication protocols. 

n We will continue studying irradiation effect on thermoelectric 
materials. 

n We will fabricate efficient and robust thermoelectric devices and 
demonstrate a self-powered WSN.  


