

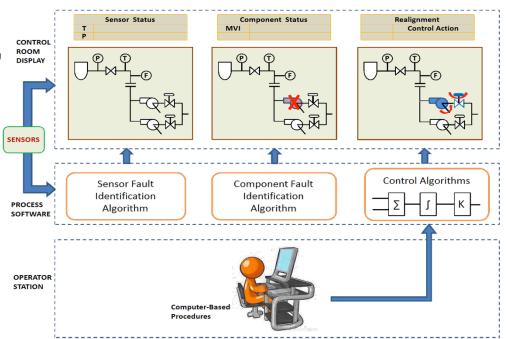
Nuclear Energy

Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting

Operator Support Technologies for Fault Tolerance and Resilience Richard Vilim, Argonne National Laboratory Ken Thomas, Idaho National Laboratory Nuclear Energy Enabling Technology

October 28-29, 2015

Project Overview


- A nuclear plant operator presently takes a symptombased approach to upsets
 - Not necessarily expected to diagnose a fault
 - Fault diagnosis is time consuming, approximate, and prone to error
- Situational awareness is limited by old technologies

Project Overview

- Objective Develop and demonstrate technologies to significantly enhance nuclear plant operator response to time-critical component faults, resulting in fewer safety challenges and higher capacity factors
- Capitalize on performance, cost, and functionality improvements of software development tools, graphics hardware, and reasoning algorithms

Computerized Operator Support System - Definition

Nuclear Energy

A Computerized Operator Support System (COSS) is a collection of capabilities to assist operators in monitoring overall plant performance and making timely, informed decisions on appropriate control actions for the projected plant condition. Features:

- Monitoring plant states to detect off-normal conditions
- Diagnosis of plant faults
- Prediction of future plant states
- Recommendation of mitigation alternatives based on embedded expert knowledge
- Decision support in selecting appropriate mitigation actions
- Monitoring to verify mitigation is effective

Goals of COSS

Nuclear Energy

Provide information automation

• Display key information operators need in one place

Provide early detection system of faults

 Faults can be detected and validate before the normal plant alarms would be actuated

Help operators make decisions

 Provide intelligent prognostics system that informs operators of emerging problems and provides early decision support

Help operators perform actions

 Computerized procedure system (instead of reams of paper) that take operators directly to the control actions that will mitigate the particular fault

Fault Diagnosis in COSS

- Conservation laws and sensor readings are used to infer the identity of a fault
- Reasoning process is not dependent on furnishing a list of candidate faults a priori to be processed by elimination
- Plant specific description is limited to process instrumentation diagram (P&ID) information
- The data is the model, hence does not require plant engineering parameter data or solving differential equations
- Diagnostic capability operates at the system level rather than being limited to the component level
- Diagnostic capability adapts to both life cycle changes and equipment realignment

Fault Diagnosis in COSS

Nuclear Energy

Sensor readings are mapped into conservation balances whose sign identifies fault. Mapping for generic valve shown here.

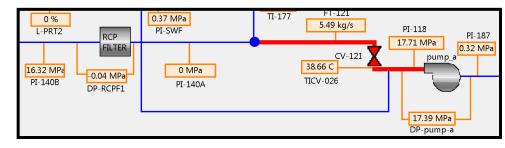
Sensor Trend ^a	Status Indicators	Fault Diagnosis
$[dw_{in}] = -$ and $[dw_{out}] = -$	$\Rightarrow d[Q_{mom}] = -$ and $d[Q_{mass}] = -$	Normal
$[dw_{in}] = \uparrow$ and $[dw_{out}] = \uparrow$	$\Rightarrow d[Q_{mom}] = -$ and $d[Q_{mass}] = -$	Normal ^b
$[dw_{in}] = \downarrow$ and $[dw_{out}] = \downarrow$	$\Rightarrow d[Q_{mom}] = -$ and $d[Q_{mass}] = -$	Normal ^b
$[\Delta P] = /-$ and $[dw] = -$	n/a	Sensor Error
$[\Delta P] = -$ and $[dw] = /-$	n/a	Sensor Error
$[dw_{in}] = \downarrow$ and $[dw_{out}] = \uparrow$ and $[P] = \uparrow$	$\Rightarrow d[Q_{mass}] = \uparrow \text{ and } d[Q_{mass}] = \downarrow$	Leak
$[dw_{in}] = \uparrow$ and $[dw_{out}] = \downarrow$ and $[P] = \downarrow$	$\Rightarrow d[Q_{mass}] = \downarrow \text{ and } d[Q_{mass}] = \uparrow$	Leak
$[\Delta P] = \uparrow$ and $[dw] = \downarrow$	$\Rightarrow d[Q_{mom}] = \downarrow \text{ and } d[Q_{mass}] = -$	Blockage
$[\Delta P] = \downarrow \text{ and } [dw] = \uparrow$	$\Rightarrow d[Q_{mom}] = \uparrow$ and $d[Q_{mass}] = -$	Opposite of Blockage

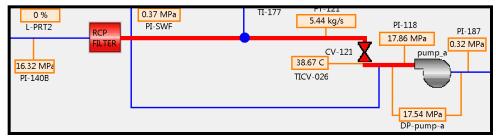
- An earlier stand-alone COSS prototype has been integrated into the NPP Control Room Simulator (SIM) of the DOE Human Systems Simulation Laboratory (HSSL), providing dynamic interaction with changing plant conditions under fault conditions.
- Two fault scenarios have been developed for operator studies.

- The COSS-SIM-PRODIAG Interface Protocol has been developed.
- Technical and Human Factors Requirements for a production COSS have been identified.
- Operator performance constructs and evaluation strategies for a COSS have been developed.
- A milestone report describing these results, A Computerized Operator Support System Prototype (INL/EXT-15-36788), was published on September 30th.

- Simulated twenty different faults in the Chemical and Volume Control System (CVCS) of a Pressurized Water Reactor (PWR)
- Verified and validated fault diagnosis algorithm using faultedplant simulation data

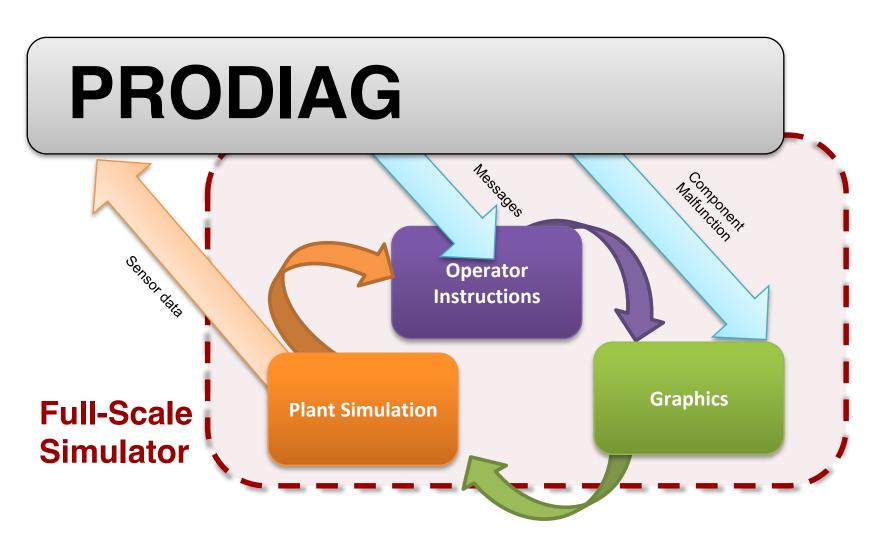
Fault	Description	Fa
CV01	Charging pump A trip	CV
CVO2	Divert valve LCV-112A failure	CV
CVO3	Pressure control valve PCV-131 failure	cv
CVO4	RCS filter clogged	CV
CVO5	RCP filter clogged	CV
CVO6	Pressure transmitter PT-131 failure	CV
CVO7	Temperature transmitter TE-130 failure	cv
CVO8	Flow control valve CV-121 failure	CV
CVO9	Letdown relief valve CV-8117 fails open	cv
CV 10	Charging line leak outside containment	cv


Fault	Description
CV 11	Regenerative heat exchanger tube leak
CV 12	VCT level malfunction
CV13	VCT pressure malfunction
CV 14	Charging header control failure
CV 15	Letdown line leak inside containment
CV 16	Letdown heat exchanger tube leak
CV 17	Letdown line leak outside containment
CV 18	Charging line leak inside containment
CV 19	Seal injection line leak
CV 20	Reactor coolant pump seal 1 failure


Nuclear Energy

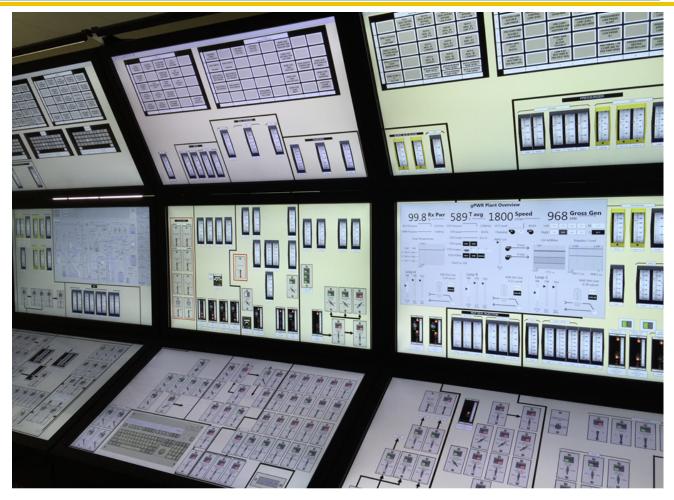
Characterized performance of fault diagnosis algorithm as a function of sensor set

Label	Default CVCS Sensor Set	Outcome with Rich Sensor Set
CV01	\checkmark	V
CV02	×	V
CV03	\checkmark	V
CV04	×	V
CV05	\bigcirc	V
CV06	v	\checkmark
CV07	\checkmark	\checkmark
CV08	v	\checkmark
CV09	×	\checkmark
CV10	\bigcirc	\checkmark
CV11	\checkmark	\checkmark
CV12	\checkmark	 ✓
CV13	\checkmark	 ✓
CV14	\bigcirc	\checkmark
CV15	×	\checkmark
CV16	\bigcirc	\checkmark
CV17	\bigcirc	\checkmark
CV18	\bigcirc	\checkmark
CV19	\checkmark	\checkmark
CV20	\checkmark	\checkmark


Rich sensor sets

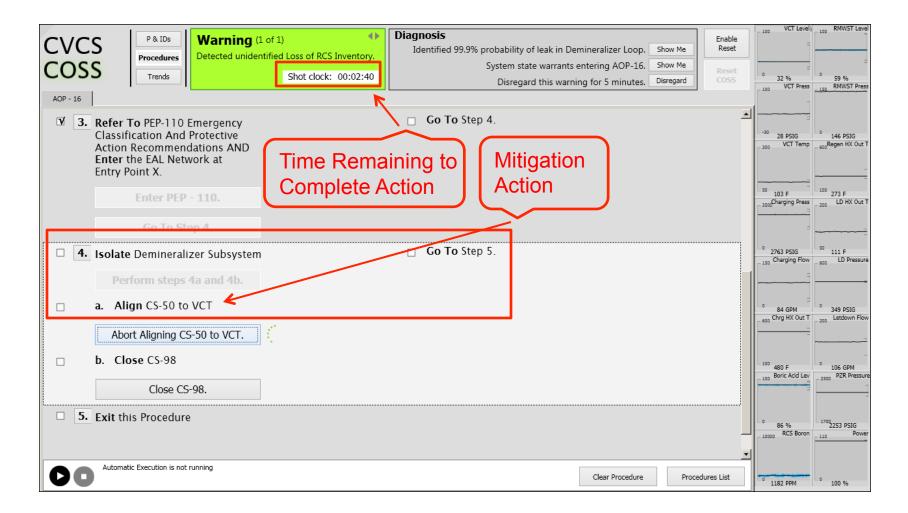
Incomplete sensor sets

Overview of Integration



COSS Integrated with HSSL Simulator

Nuclear Energy


COSS has been integrated into the full scope simulator for a 3-Loop PWR. The COSS display to the left is the **Operator Interface** panel. The COSS display to the right is the Plant Systems Overview. The COSS displays reflect the real-time plant parameters for normal and fault conditions.

Nuclear Energy

COSS Transitions to Computer-Based Procedures for Fault Mitigation

Initial Operator Feedback

Nuclear Energy

Walked four licensed reactor operators through two scenarios

Conducted think-aloud protocol paired with semi-structured interviews

Findings (open-ended feedback)

- The system responded accurately to the plant upset
- Warning system deemed effective in alerting operators to problems
- Integration of information in the computer-based procedures greatly reduced operator movement across the control boards
- Multiuse of alarm tiles to both trend and alarm was considered extremely helpful to the operators

Technology Impact

- NPP control room operator performance remains a significant factor in nuclear safety for operating plants, in spite of two decades of emphasis on various human performance techniques. While partially successful, these techniques have added substantial operator burden.
- There has been very little innovation to assist control room operators with plant system monitoring, fault detection and diagnosis, and decision support for fault mitigation.
- COSS is a highly promising technology to reduce operator burden while improving operator performance and thereby increasing nuclear safety margins. It assists operators without encroaching on licensed operator responsibilities and authority.
- COSS builds on concepts that have been proven in other industry sectors, notably aviation.

Nuclear Energy

Implemented, tested, and demonstrated main technologies

- The respective Labs have completed their first year tasks and as we enter the second year integration will take place
- Method for fault diagnosis requires only P&ID input and so unlike other approaches it is tenable from a business model perspective – does not require a subject matter expert either during initial deployment or during operational life
- Operators are looking for structure and organization in the way data is displayed – good feedback so far

Ready for full-scale simulator link-up

- Integration of validation, detection, diagnosis, control, and monitoring steps
- On path to demonstrate that an operator advisory system for the longest time an unrealized concept – is now achievable given the current state of supporting technology infrastructure (hardware, software, development tools)