
 

 

SANDIA REPORT 
SAND2014-18019 

September, 2015 

 

 

 

Conceptual Framework for Developing 

Resilience Metrics for the Electricity, Oil, 

and Gas Sectors in the United States 
 

 

Jean-Paul Watson, Ross Guttromson, Cesar Silva-Monroy, Robert Jeffers, Katherine 

Jones, James Ellison, Charles Rath, Jared Gearhart, Dean Jones, Tom Corbet, Charles 

Hanley, La Tonya Walker 

 

 

 

 

 
Prepared by 

Sandia National Laboratories 

Albuquerque, New Mexico  87185 and Livermore, California  94550 

 
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,  

a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's  

National Nuclear Security Administration under contract DE-AC04-94AL85000. 

 

Approved for public release; further dissemination unlimited. 

 

 

 

 

 

 

 
  



 

September, 2015 2 SAND2014-18019 

 

 

 
Issued by Sandia National Laboratories, operated for the United States Department of Energy 

by Sandia Corporation. 

 

NOTICE:  This report was prepared as an account of work sponsored by an agency of the 

United States Government.  Neither the United States Government, nor any agency thereof, 

nor any of their employees, nor any of their contractors, subcontractors, or their employees, 

make any warranty, express or implied, or assume any legal liability or responsibility for the 

accuracy, completeness, or usefulness of any information, apparatus, product, or process 

disclosed, or represent that its use would not infringe privately owned rights. Reference herein 

to any specific commercial product, process, or service by trade name, trademark, 

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government, any agency thereof, or any of 

their contractors or subcontractors.  The views and opinions expressed herein do not 

necessarily state or reflect those of the United States Government, any agency thereof, or any 

of their contractors. 

 

Printed in the United States of America. This report has been reproduced directly from the best 

available copy. 

 

Available to DOE and DOE contractors from 

 US Department of Energy 

 Office of Scientific and Technical Information 

 P.O. Box 62 

 Oak Ridge, TN  37831 

 

 Telephone: (865) 576-8401 

 Facsimile: (865) 576-5728 

 E-Mail: reports@adonis.osti.gov 

 Online ordering: http://www.osti.gov/bridge 

 

Available to the public from 

 US Department of Commerce 

 National Technical Information Service 

 5285 Port Royal Rd. 

 Springfield, VA  22161 

 

 Telephone: (800) 553-6847 

 Facsimile: (703) 605-6900 

 E-Mail: orders@ntis.fedworld.gov 

 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 

 

 

 
 

 

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online


 Conceptual Framework for Developing Resilience Metrics for US Electricity, Oil, and Gas Sectors 

SAND2014-18019 3 September, 2015 

SAND2014-18019  

September, 2015 

 

 

Conceptual Framework for Developing Resilience 

Metrics for the Electricity, Oil, and Gas Sectors in the 

United States 
 

Jean-Paul Watson, Sandia National Laboratories, Data Analysis & Informatics Dept. 

Ross Guttromson, Sandia National Laboratories, Electric Power Systems Research Dept. 

Cesar Silva-Monroy, Sandia National Laboratories, Electric Power Systems Research Dept. 

Robert Jeffers, Sandia National Laboratories, Resilience & Regulatory Effects Dept. 

Katherine Jones, Sandia National Laboratories, Operations Research & Knowledge Management Systems Dept. 

James Ellison, Sandia National Laboratories, Electric Power Systems Research Dept. 

Charles Rath, Sandia National Laboratories, Resilience & Regulatory Effects Dept. 

Jared Gearhart, Sandia National Laboratories, Operations Research & Knowledge Management Systems Dept. 

Dean Jones, Sandia National Laboratories, Operations Research & Knowledge Management Systems Dept. 

Tom Corbett, Sandia National Laboratories, Resilience & Regulatory Effects Dept. 

Charles Hanley, Sandia National Laboratories, Grid Modernization & Military Energy Systems Group 

La Tonya Walker, Sandia National Laboratories, Earth Systems Analysis Dept. 

 

Sandia National Laboratories 

P.O. Box 5800 

Albuquerque, New Mexico  87185 

 

Abstract 

 

This report has been written for the Department of Energy’s Office of Electricity 

Delivery and Energy Reliability to support the Office of Energy Policy and Systems 

Analysis in their writing of the Quadrennial Energy Review in the area of energy 

resilience.  The topics of measuring and increasing energy resilience are addressed, 

including definitions, means of measuring, and analytic methodologies that can be 

used to make decisions for policy, infrastructure planning, and operations.  A risk-

based framework is presented which provides a standard definition of a resilience 

metric.  Additionally, a process is identified which explains how the metrics can be 

applied.  Research and development is articulated that will further accelerate the 

resilience of energy infrastructures. 
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EXECUTIVE SUMMARY 
 

The President of the United States announced the formation of a White House Task Force—co-

chaired by the Director of the Office of Science and Technology Policy and the Director of the 

Domestic Policy Council and comprising 22 Federal agencies and offices with equities in 

energy—to develop the Quadrennial Energy Review (QER). The President further directed the 

Department of Energy (DOE) to provide analytical support for the QER and to help manage the 

interagency process through a secretariat at DOE which was assigned to the Office of Energy 

Policy and Systems Analysis (DOE/EPSA). EPSA’s role is to deliver unbiased energy analysis to 

the DOE’s leadership on existing and prospective energy-related policies, focusing in part on 

integrative analysis of energy systems. This report is written to inform DOE/EPSA, as they write 

the energy resilience section of the QER, and the DOE Office of Electricity Delivery and Energy 

Reliability, which leads efforts to ensure a resilient, reliable, and flexible electricity system and 

securing the US energy infrastructure against all hazards; reducing the impact of disruptive 

events; and responding to and facilitating recovery from energy disruptions. This report includes 

a general resilience metric framework and procedures for analyzing, quantifying, and planning 

for resilience of energy infrastructure systems. Additionally, the report provides use cases 

regarding electricity, petroleum, and natural gas to provide tangible examples of how these 

resilience metrics can be put into practical use. 

Our nation’s emergence as one of the world’s most productive and innovative economies reflects 

broad access to abundant, reliable, and cheap energy. Unfortunately, the threats to our energy 

infrastructure, both natural and man-made, continue to grow. Recent events such as “Superstorm” 

Sandy and the 2011 Tohoku earthquake/tsunami in Japan caused major losses in human life and 

infrastructure, with prolonged recovery and financial impacts. Our nation faces significant risk 

from prolonged electrical outages. For example, problems with the power grid now cost the 

economy at least $150 billion per year
1
 and have been trending upward. 

In February 2013, the President strengthened and broadened our national position on critical 

infrastructure resilience by implementing Presidential Policy Directive 21 (PPD-21), Critical 

Infrastructure Security and Resilience. The directive applies to all critical infrastructures, but 

calls out energy infrastructures as being uniquely critical due to the enabling functions they 

provide across all other critical infrastructures. This document goes on to define resilience as “the 

ability to prepare for and adapt to changing conditions and withstand and recover rapidly from 

disruptions. Resilience includes the ability to withstand and recover from deliberate attacks, 

accidents, or naturally occurring threats or incidents.”
2
 As an important step in avoiding conflict 

with well established reliability metrics and associated regulations, we have constrained our 

definition of resilience to high-consequence, low-probability events. Consequences, as stated in 

                                                 
1
 “The Smart Grid: An Introduction,” Prepared for the US Dept. of Energy by Litos Strategic Communication, 

(http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/DOE_SG_Book_Single_Pages%281%29.pdf). 
2
 “Presidential Policy Directive—Critical Infrastructure Security and Resilience,” White House press release, 

February 12, 2013, (http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-

infrastructure-security-and-resil). 

http://energy.gov/sites/prod/files/oeprod/DocumentsandMedia/DOE_SG_Book_Single_Pages%281%29.pdf
http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
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PPD-21, reflect social welfare. They go beyond the ability of a system to operate and address the 

vitality of our national safety, prosperity, and well-being. 

Measuring progress toward a more resilient energy infrastructure requires developing and 

deploying metrics that can be used to assess planning, operations, and policy changes for energy 

infrastructure. Metrics developed for this purpose are described in this report and are represented 

as probability density functions (PDFs) of consequences that may result from one or more threats 

to a system. This representation allows the analyst to understand the expected consequences 

using its mean value, but also clearly identifies the range of possible consequences by viewing 

the shape of its distribution. Threats may include natural or man-made hazards such as hurricanes 

or physical threats. The red curve in the figure below is a notional representation of a resilience 

metric, herein denoted as a resilience framework. By specifying the applicable system, the threat, 

and consequences, the framework is transformed into a metric. 

 

Figure 1.  A resilience metric framework is defined as “the probability of consequence X given threat Y”. 

The framework allows for metrics that: 

 Are useful.  Metrics developed under this framework must be useful for decision making (by 

humans, computational analysis, or both). Decisions of interest include system planning 

decisions, real-time operations decisions, and policy decisions. 

 Provide a mechanism for comparison.  Applying the same metric to different systems 

should result in valuable information. Furthermore, the same metric must be able to 

differentiate between the resilience of a system that has not been enhanced and one that has 

(either through infrastructure or operations enhancements). 

 Are useable in operations and planning contexts.  The same metric should be able assist 

decisions for both planning and operations. 

 Exhibit extensibility.  The metrics selected must be scalable in time and geography. The 

metrics should remain valid as technology progresses and more complex analytic methods 

become feasible. 

 Are quantitative.  The framework must allow the development of metrics that can be used 

both qualitatively and quantitatively. 
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 Reflect uncertainty.  It’s critical that metrics are populated using methods that will quantify 

the uncertainty of the result. Specifically, decisions being made based on a resilience metric 

value must be well informed by the certainty of that value. 

 Support a risk-based approach.  The metrics should reflect a specific threat or set of 

threats, the system vulnerability, and potential consequences to people (beyond the immediate 

system effects). 

 Consider recovery time.  Resilience metrics should reflect the consequences over time, and 

therefore must consider the recover period either directly or indirectly. 

Two fundamental concepts of this risk-based framework are 

 resilience is defined with respect to disturbance(s) or threat(s) and 

 consequences relate to the social effects of system performance in addition to system 

performance itself. 

Although ongoing research and development (R&D) is needed to improve the ability to link 

energy system performance to social consequences, is is useful understanding what can be 

harnessed now. 

In order to populate (or enumerate) the metric, analysis must be conducted. This analysis can be 

complex, and although this report provides examples, this is also an area for further research. 

Because different regions of the country have different potential hazards, stakeholders must 

select metrics that will help them measure progress toward their specific resilience goals. For 

example, the East Coast is at risk for hurricanes, although the desert Southwest is not. Similarly, 

the most important social consequences for different regions within the US would likely be 

dissimilar. Although the framework applies broadly, individual metrics should be developed with 

stakeholder feedback. 

Deploying metrics in the form discussed represents a fundamental change in approach for 

defining energy system resilience within the energy industry and state and local governments. 

There has been little work that quantitatively expresses values of resilience. Much of the previous 

work has focused on defining system attributes that result in increased resilience, such as the 

number of critical spare parts in inventory, but has been unable to quantify the resilience benefit. 

Although attribute-based resilience metrics will continue to be valuable, this shift moves toward a 

quantitative, risk-based assessment useful for complex decisions. Such a shift requires 

stakeholder education, especially in metric application (see Appendices B, C, and D for example 

case studies). Further, it relies upon new data sets, the use of system models, and rigorous 

analysis. A comprehensive survey of resilience metrics
3
 can be found in a report conducted by 

the RAND Corporation for the DOE. Other significant reports on resilience are also cited.
4,5,6

 

                                                 
3
 H. H. Willis and K. Loa, “Measuring the Resilience of Energy Distribution Systems,” RAND Justice, Infrastructure, 

and Environment, PR-1293-DOE, July, 2014. 
4
 “Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX): Special 

Report of the Intergovernmental Panel on Climate Change,” C. Field, V. Barros, T. Stocker, et al. Eds., 

(Cambridge University Press, New York, N.Y., 2011), 594 pp. 
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A Resilience Analysis Process (RAP) has been developed herein as method for the assessment of 

baseline resilience and evaluation of resilience improvements. The RAP is designed to support 

decision makers high-level goals with a defensible, risk-based decision. The first six steps of the 

RAP give decision makers and stakeholders a method for assessing a system’s baseline 

performance. When all seven steps are followed, the focus of the RAP expands identifying 

improvements that increase resilience. These improvements could be identified by analyzing or 

by optimizing the characteristics of these proposals to identify the best improvement strategies. A 

summary of the seven-step RAP is as follows: 

1. Define Resilience Goals.  Before determining the scope of the system relevant for analyzing 

and selecting appropriate metrics, it is essential to define high-level resilience goals. The goal 

set during this first RAP step lays the foundation for all following steps. 

2. Define System and Resilience Metrics.  The system under consideration and the resilience 

metric definitions determine the analysis’ scope. This could include identifying a larger 

system’s geographic boundaries, relevant time periods, and/or relevant components. 

3. Characterize Threats.  Threat characterization is critical to understanding how capable the 

system must be to absorb and adapt to different types of attacks or natural events. When 

evaluating resilience against multiple hazards, information about (1) the likelihood of each 

possible threat scenario and (2) the capabilities or strength of the threat are extremely im-

portant. In risk analysis, threat and consequence are used to understand which vulnerabilities 

are most important to address to reduce the consequences associated with the threat. 

4. Determine Level of Disruption.  Once an understanding of the relevant threats has been 

solidified, the attributes of each threat are used to determine the amount of damage to the 

system (infrastructure, equipment, etc.) that is likely to result from that set of threats. This is 

the RAP step where expectations about structural damage or other system impacts that could 

affect performance are defined. 

5. Define and Apply System Models.  The damage states outlined in Step 4 can then be used as 

input to system models—tying damage to system output levels. For example, anticipated 

physical damage (or a range of damage outcomes incorporating uncertainty) to an electric 

grid from an earthquake can be used as input to a system model that ties those outages due to 

damage to load not served within the system over time. Multiple system models may be 

required to capture all of the relevant aspects of the complete system. Furthermore, 

dependencies may exist between models. 

6. Calculate Consequence.  When evaluating resilience, direct impacts to system output as a 

result of damage are only part of the story. Most energy systems provide energy some larger 

social purpose (e.g., transportation, health care, manufacturing, economic gain). During this 

step, outputs from system models are converted to the resilience metrics that were defined 

                                                                                                                                                             
5
 North American Reliability Corporation, “North American Reliability Corporation (NERC) Cyber Attack Task Force 

Final Report,” May, 2012. 
6
 B. Plumer, “Bad news: The U.S. power grid is getting pricier, less reliable,” The Washington Post (Blogs), March 8, 

2013, (http://www.washingtonpost.com/blogs/wonkblog/wp/2013/03/08/surprise-the-u-s-power-grid-is-getting-

pricier-less-reliable/). 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAA&url=http%3A%2F%2Fwww.nerc.com%2Fdocs%2Fcip%2Fcatf%2F12-CATF_Final_Report_BOT_clean_Mar_26_2012-Board%20Accepted%200521.pdf&ei=LXccVM3aFI3foAS80YLgDQ&usg=AFQjCNEOQrQDCqmPKOfEucFlsj4nmJg_RQ&bvm=bv.75775273,d.cGU
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB4QFjAA&url=http%3A%2F%2Fwww.nerc.com%2Fdocs%2Fcip%2Fcatf%2F12-CATF_Final_Report_BOT_clean_Mar_26_2012-Board%20Accepted%200521.pdf&ei=LXccVM3aFI3foAS80YLgDQ&usg=AFQjCNEOQrQDCqmPKOfEucFlsj4nmJg_RQ&bvm=bv.75775273,d.cGU
http://www.washingtonpost.com/blogs/wonkblog/wp/2013/03/08/surprise-the-u-s-power-grid-is-getting-pricier-less-reliable/
http://www.washingtonpost.com/blogs/wonkblog/wp/2013/03/08/surprise-the-u-s-power-grid-is-getting-pricier-less-reliable/
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during Step 2. When uncertainty is included in the RAP, probability distributions will 

characterize the resilience-metric values. 

7. Evaluate Resilience Improvements.  Unless the RAP is being undertaken purely for 

assessment purposes, it is likely that some decision or decisions must be made about how to 

modify operational decisions or plan investments to improve resilience. After completing a 

baseline RAP through the preceding steps, it is possible and desirable to populate the metrics 

for a system configuration that is in some way different from the baseline in order to compare 

which configuration would provide better resilience. This could be 

 a physical change (e.g., adding a redundant power line); 

 a policy change (e.g., allowing the use of stored gas reserves during a disruption); or 

 a procedural change (e.g., turning on or off equipment in advance of a storm). 

Conclusions and Recommendations 
 A framework for energy resilience metrics has been created such that: 

 Energy resilience metrics quantify the expected consequence due to events that have low 

probability but potentially high consequence. Consequences focus on social welfare, 

extending beyond system impacts. 

 The resilience metrics rely on the performance of the system, as opposed to attributes of 

that system. 

 The resilience metrics incorporate the uncertainty associated with limited information 

about the system and the threat. 

 Resilience metrics quantify performance given uncertainty, providing insights into risk 

management and cost/benefit processes for planning, operations, and policy building. 

 A resilience analysis process has been created that explains how to use resilience metrics. The 

process is flexible enough for use by different stakeholders and infrastructures. Stakeholder 

goals should drive the selection of metrics used for an analysis within the framework 

provided. 

 Continued research is essential: 

 More research is needed to improve quantification of human/societal consequences based 

on reduced system performance in a disruption. Key areas for R&D investment include 

multi-category uncertainty quantification, modeling and simulation of disruption, 

recovery and repair, and adaptive system operation algorithms. 

 Developing a library of suggested performance indicators and recommended methods for 

translating those system outputs to common consequence measures is a necessary national 

research and development pursuit. 

 Data availability will be a challenge in the early stages of adopting these methods, so 

some effort is likely to be needed with respect to data collection and establishing 

associated best practices. 
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 Outreach and collaboration is necessary to define the types of decisions that will use 

resilience metrics, as well as the metrics' units of consequence, selection of threats, and 

quantification of uncertainty. 

 A stakeholder group should be created for the refinement and standardization of metrics for 

electricity, petroleum, and natural gas sectors for the validation of this resilience metric 

framework. Specific areas that should be addressed include: 

 Differentiate reliability metrics from resilience metrics with input from state, federal and 

regional regulatory authorities and other stakeholders 

 Determine federal, state, and local government roles 

 Work toward stakeholder buy-in and coordination: federal and state regulators, utilities, 

asset owners, and other key stakeholders 

 Conduct an expanded case study using data from one or more major utilities (in 

coordination with that utility) 
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1.  INTRODUCTION 
 

Over the past decade, resilience has emerged as a new design and operations goal for the critical 

infrastructure protection community. Historically, infrastructure security activities have primarily 

focused on preventing disruptive events. However, the critical-infrastructure community now 

recognizes that it is simply not possible to prevent all threats, at all times, for all infrastructure 

assets. Hence, critical infrastructure resilience—an infrastructure’s “ability to prepare for and 

adapt to changing conditions and withstand and recover rapidly from disruptions,”
7
—is now 

recognized as a complementary criterion to security activities. Federal policy toward 

infrastructure resilience has been formalized in Presidential Policy Direction 21 (PPD-21), 

Critical Infrastructure Security and Resilience, which has designated the DOE as the Sector 

Specific Agency with lead responsibilities in the energy sector as “uniquely critical.” 

The Department of Energy (DOE) has further recognized the need for increased resilience in the 

energy sector. Economic Benefits of Increasing Electric Grid Resilience to Weather Outages
8
 

estimates the average annual cost of weather-related power outages to be between $18 and $33 

billion over the past decade. U.S. Energy Sector Vulnerabilities to Climate Change and Extreme 

Weather
9
 notes that the frequency of extreme weather events is expected to increase as a result of 

climate change, increasing risk not only to the electric power sector, but also to petroleum and 

natural-gas infrastructure systems. 

This report recommends a combination of technologies, policies, information, and stakeholder 

engagement to strengthen the energy sector’s resilience to climate change, and the DOE’s 

Climate Change Adaptation Plan
10

 affirms this position, making “improve the climate resiliency 

of all DOE sites” one of the plan’s top four goals. In addition, as part of a White House initiative 

under EO 13653 “Preparing the United States for the Impacts of Climate Change,” DOE and 

DHS co-chair an interagency infrastructure resilience working group. DOE’s commitment to 

resilience extends beyond extreme weather and climate change disruptions to include intentional 

acts such as cyber-attacks. The Roadmap to Achieve Energy Delivery Systems Cybersecurity
11

 

designates “resilient energy delivery systems are designed, installed, operated, and maintained to 

survive a cyber incident while sustaining critical functions” as the vision for the energy sector. 

Furthermore, DOE’s new Operational Energy and Resilience Program is expected to contribute 

to both the development of new resilience technologies and to coordination with the Federal 

                                                 
7
 Presidential Policy Directive 21, Critical Infrastructure Security and Resilience, February 2013, 

(http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-

and-resil). 
8
 Economic Benefits of Increasing Electric Grid Resilience to Weather Outages, August 2013, (http://energy.gov/ 

downloads/economic-benefits-increasing-electric-grid-resilience-weather-outages). 
9
 U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather, July 2013, (http://energy.gov/ 

downloads/us-energy-sector-vulnerabilities-climate-change-and-extreme-weather). 
10

 U. S. Department of Energy 2012 Strategic Sustainability Performance Plan, Appendix A: Climate Change 

Adaptation Plan, 2012, (http://www1.eere.energy.gov/sustainability/pdfs/doe_sspp_2012.pdf). 
11

 The Roadmap to Achieve Energy Delivery Systems Cybersecurity, September 2011, (http://energy.gov/sites/ 

prod/files/Energy%20Delivery%20Systems%20Cybersecurity%20Roadmap_finalweb.pdf). 

http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
http://energy.gov/downloads/economic-benefits-increasing-electric-grid-resilience-weather-outages
http://energy.gov/downloads/economic-benefits-increasing-electric-grid-resilience-weather-outages
http://energy.gov/downloads/us-energy-sector-vulnerabilities-climate-change-and-extreme-weather
http://energy.gov/downloads/us-energy-sector-vulnerabilities-climate-change-and-extreme-weather
http://www1.eere.energy.gov/sustainability/pdfs/doe_sspp_2012.pdf
http://energy.gov/sites/prod/files/Energy%20Delivery%20Systems%20Cybersecurity%20Roadmap_finalweb.pdf
http://energy.gov/sites/prod/files/Energy%20Delivery%20Systems%20Cybersecurity%20Roadmap_finalweb.pdf
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Emergency Management Agency (FEMA).
12

 These are but a few examples of DOE’s 

commitment to increasing resilience of the energy sector. 

This report includes a general resilience framework, including prototype metrics for analyzing, 

quantifying, and planning for energy infrastructure system resilience. Additionally, the report 

outlines the development of gas, oil, and grid specific metrics to provide a tangible example of 

how the general framework can be put into practical use. 

                                                 
12

 Public Law No: 113-76, Explanatory Statement: Division D—Energy and Water Development and Related 

Agencies, p. 64, January 2014, (http://docs.house.gov/billsthisweek/20140113/113-HR3547-JSOM-D-F.pdf). 

http://docs.house.gov/billsthisweek/20140113/113-HR3547-JSOM-D-F.pdf
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2.  WHAT IS RESILIENCE? 
 

2.1 Literature Review 
Many definitions of resilience exist, but few are standardized in their application to energy 

infrastructure. A literature review
13

 on resilience and its application in energy and other critical 

infrastructures was conducted separately by the RAND Corporation, and should be referenced as 

a collaborative document. 

2.2 Defining Resilience 
The foundation of the work in this document is based on the definition of resilience offered 

through PPD-21, stating: 

 “the ability to prepare for and adapt to changing conditions and withstand and 

recover rapidly from disruptions. Resilience includes the ability to withstand and 

recover from deliberate attacks, accidents, or naturally occurring threats or 

incidents.”
14

 

In refinements of this definition, the focus of resilience is on high-consequence, low-probability 

events (e.g., hurricanes, ice storms, malevolent attacks). This is not to limit importance to those 

areas only, but does recognize that many of the existing metrics in the areas of ‘reliability’ 

already include low-consequence, high-probability events (e.g., System Average Interruption 

Duration Index [SAIDI] or System Average Interruption Frequency Index [SAIFI] system-

reliability metrics used in the electric power sector). 

There is recognition too that in defining resilience, one should be able to measure it. As 

articulated by the National Academy of Sciences: 

 “without some numerical basis for assessing resilience, it would be impossible to 

monitor changes or show that community resilience has improved. At present, no 

consistent basis for such measurement exists…”
15

 

Finally, the recommendation is to use a risk-based approach to develop resilience metrics. This 

implies several key factors: 

 Resilience is always defined with respect to a disruption or threat. For example, an electric 

infrastructure system may be resilient to hurricanes, but that says little about its resilience to 

ice storms, cyber attacks, or heat waves. 

 Resilience metrics are defined to focus on the consequences of a system failure rather than 

the system failure itself. For example, it is possible that a portion of an energy infrastructure 

                                                 
13

 H. H. Willis and K. Loa, “Measuring the Resilience of Energy Distribution Systems,” RAND Justice, Infrastructure 

and Environment, PR-1293-DOE, July, 2014. 
14

 Presidential Policy Directive 21, Critical Infrastructure Security and Resilience, February 2013, 

(http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-

and-resil). 
15

 National Academy of Sciences, Disaster Resilience: A National Imperative, (National Academies Press, 

Washington DC, 2012). 

http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
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system could be made more reliable (e.g., increased SAIDI or SAIFI system-reliability 

metrics), but the location of that reliability could have minimal advantage to social welfare 

during a major disruption. 

 Resilience is always defined with respect to a specific system. That means that it is not useful 

to assign a value of resilience to a generic system, or one that has not been fully defined. 

At a high level, a resilience metric must, at a minimum, consider the following key attributes: 

 Threat.  Definitions of likely disruption scenarios, with associated probabilities where 

appropriate. 

 Likelihood.  Probability that a disruption scenario may lead to decreased system performance 

or failure. 

 Consequence.  The impact of system failure given a disruption scenario. 

We observe that reliability metrics do not possess these attributes—they are orthogonal in 

purpose and discrimination capability to resilience metrics. Additionally, we note that risk is 

informally (and often formally) defined as the arithmetic product of threat, likelihood, and 

consequence. As a result, a deep relationship exists between the notion of system risk and the 

concept of a resilience metric, such that changes in resilience will often (but not always) create 

changes in reliability. 

As an example of these properties in a electric power sector context, consider the “threat” of 

disruptive weather to a particular electric utility. Likely disruption scenarios can be determined 

historically, defined in terms of the number and location of grid component failures. The 

likelihood (and extent) of each disruption scenario can be computed via systems analysis, given 

knowledge of available alternative generation and transmission/distribution resources and 

potential system states. Similarly, consequence for the disruption scenario can then be expressed 

in terms of the economic and/or public-health impacts. It should be clear that the definition of 

quantitative resilience metrics requires more data and stakeholder participation than reliability 

metrics, due primarily to the computation of consequences and the definition and scoping of low 

probability threat scenarios. 

The precise definition of consequence is multi-attributed. In particular, consequence are 

quantified in terms of social impact (for example) loss of service, duration of loss, financial 

impacts of loss, recovery costs and resource requirements, and criticality of service where loss is 

incurred. Different operational decisions can yield different values of these quantities, and 

different stakeholders will emphasize different quantities. The decision-control architecture we 

introduce below facilitates comparison and analysis of the relationships between these various 

quantities. 

System state is integral to definition and computation of energy resilience metrics, in particular 

because the extent of disruption due to a particular initiating event is highly dependent upon the 

system state at the time of failure. Further, because the certainty of our system state information 

is not perfect (e.g., due to measurement precision and limited quantities of sensors), resilience is 
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necessarily stochastic (i.e., the consequence of a particular disruption scenario is variable and 

uncertain). While the stochastic nature of resilience complicates the presentation of the resilience 

metrics, the information conveyed is more accurate and better represents the overall risk—and, as 

we discuss below, can therefore be the basis for control decisions to mitigate system risk. 

Beyond system state, the final component in computing resilience metrics is the set of control 

decisions available to an operator and the values of those controls over time. For example, poor 

decisions about positioning of restoration crews in advance of a hurricane can significantly 

increase restoration time. In contrast, optimal decision-making in this regard may reduce 

restoration time to a few hours, minimizing the impact of the hurricane. Due to the relationship 

between operational decisions and consequence, it is impossible to separate the definition of 

resilience metrics from the specifics of the operational environment in which they are placed. 

This observation drives our discussion below of advanced decision-control architectures for 

resilience. 

Above, we have outlined the key features of a resilience metric and the implications of those 

features for operational system control. Fundamentally, resilience metrics and the decision-

control system in which they are placed are interdependent, such that static computation of a 

resilience metric cannot proceed independent of some representation of the control system. This 

has immediate implications for not only resilient operations, but also—and perhaps more 

importantly—investment planning. 

Presently, grid operators possess no ability to quantify resilience during real-time operating 

conditions. Instead, available reliability metrics only indicate whether the necessary criteria are 

met for reliable operation. During electric-grid contingency situations that violate mandatory 

reliability criteria, such as the loss of multiple transmission lines or generators, operators have no 

means to quantify the risk to which the system is exposed. Without such guidance, power-grid 

control systems can neither effectively anticipate nor respond to contingency situations. 

 
Figure 2.  Critical Infrastructure Planning and Operations Timelines: The top-most vector represents 

operator knowledge and actions. The bottom-most vector represents various aspects of system design 

and operation. 
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It is useful to consider recasting system-specific operational régimes into this more general 

context. In Figure 2, we show the planning and operations timelines for a general critical 

infrastructure. A key point of this figure is to illustrate that post-event operational terms, 

including mitigation, response, recovery, and reinvestment play an integral and central role. In 

contrast, these terms have not made their way to the forefront of energy systems operations. 
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3.  RESILIENCE ANALYSIS PROCESS 
 

The Resilience Analysis Process (RAP) can be used to assess baseline resilience and evaluate 

resilience improvements. In simple terms, it explains how to ‘use’ a resilience metric. The 

process is designed to lead decision makers from high-level goals to a defensible, risk-based 

decision. Figure 3 illustrates the RAP steps. 

The first six steps of the RAP give decision makers and stakeholders a method for assessing the 

baseline performance of a system with respect to resilience. When all seven steps are followed, 

the focus of the RAP expands to identifying the improvements that will increase resilience. These 

improvements could be identified by analyzing or by optimizing the characteristics of these 

proposals to identify the best improvement strategies.  

The RAP steps are depicted as a circle due to the iterative nature of resilience analysis. Francis 

and Bekera (2014) maintain that “vulnerability analysis at regular intervals is a key to 

recognizing disruptive events in advance and continuously self-evaluating and learning from 

incidents.”
16

 Periodic re-evaluation of system resilience is important for 

 validating resilience analysis methodology, 

 validating models against actual incident data, and 

 updating resilience assessments with current technology methods and improved threat 

characterization. 

 
Figure 3.  The Resilience Analysis Process: The steps of which progress counterclockwise from “Define 

Resilience Goals.” 

                                                 
16

 R. Francis and B. Bekera, “A metric and frameworks for resilience analysis of engineered and infrastructure 

systems,” Reliability Engineering & System Safety, 121, 90–103, (January 2014), 
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All relevant stakeholders should engage in the RAP. While there may be a single decision maker 

or small set of decision makers with a question of concern, engaging a broad community in each 

RAP step helps ensure a more complete analysis. Each step shown in Figure 3 is described in the 

subsections below. 

3.1 Define Resilience Goals 
Before determining the scope of the system relevant for analyzing and selecting appropriate 

metrics, it is essential to define high-level resilience goals. The goal set during this first RAP step 

lays the foundation for all following steps. For example, discussion during this phase should 

determine whether assessing resilience is the main goal, or if evaluating possible system 

improvements is a central objective. If evaluating improvements is within the scope of the 

analysis, a decision should be made about the kinds of changes to be considered and the types of 

questions the analysis should address. 

During this stage, key stakeholders and any possible conflicting goals are identified. Some 

examples of high-level goal language appropriate at this step of the process are: 

 Improving a regional electric grid’s resilience to natural disasters 

 Deciding how to allocate a pipeline’s capital investment and maintenance budget 

 Ensuring availability of power to medical or transportation systems during disasters 

3.2 Define System and Resilience Metrics 
System and resilience-metrics definitions determine the analysis’ scope. This could include 

identifying a system’s geographic boundaries, relevant time periods, and/or relevant components. 

Because some consequence measures (e.g., macroeconomic impacts) require a relatively broad 

system definition, this is also a good time for stakeholders to discuss the types of consequences 

about which they are most concerned. 

Determining the appropriate level of fidelity for the analysis should be driven at least in part by 

the high-level goals set during the previous step, although data availability can often drive these 

decisions as well. Metrics selected should be specific enough to enable decision-making, whether 

for operational or planning purposes. 

3.3 Characterize Threats 
Threat characterization is critical to understanding how capable the system must be to absorb and 

adapt to different types of attacks or natural events. When performing an analysis to evaluate 

resilience against multiple hazards, information about (1) the likelihood of each possible threat 

scenario and (2) the capabilities or strength of the threat is extremely important. In risk analysis, 

threat and consequence are used to understand which system vulnerabilities are most important to 

address to reduce the consequences associated with the threat. 

3.4 Determine Level of Disruption 
Once an understanding of the relevant threats has been solidified, the attributes of each threat are 

used to determine the amount of damage to the system (infrastructure, equipment, etc.) that is 
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likely to result from that set of threats. Models like FEMA’s HAZUS can be useful at this stage—

HAZUS contains models for estimating potential losses from earthquakes, floods, and 

hurricanes.
17

 All of these types of models can be supplemented by noncommercial analysis such 

as optimization packages. This is the RAP step where expectations about structural damage or 

other system impacts that could affect performance are defined. 

3.5 Define and Apply System Models 
The damage states outlined in the previous RAP step can then be used as input to system 

models—tying damage to system output levels. For example, anticipated physical damage (or a 

range of damage outcomes when incorporating uncertainty) to an electric grid from an earthquake 

can be used as input to a system model that ties those outages due to damage to load not served 

within the system over time. Multiple system models may be required to capture all of the 

relevant aspects of the complete system. Furthermore, dependencies may exist between models. 

For example, a repair and cost model may be used to determine a repair schedule for components 

of an infrastructure. The schedule determined by these models may inform systems models to 

assess how the systems perform during the restoration period. 

3.6 Calculate Consequence 
When evaluating resilience, direct impacts to system output as a result of damage are only part of 

the story. Most energy systems provide energy not just for the sake of the generating or 

distributing it—but for some larger social purpose (e.g., transportation, health care, 

manufacturing, economic gain). During this step, outputs from system models are converted to 

the resilience metrics that were defined during the second RAP step. When uncertainty is 

included in the RAP, probability distributions will characterize the resilience-metric values. 

Depending on which stakeholders are performing the analysis, there could be significant 

differences about which kinds of consequences are prioritized. Methods such as the Analytic 

Hierarchy Process (AHP) can be used to support expert determinations of the relative importance 

of these measures. 

3.7 Evaluate Resilience Improvements 
Unless the RAP is being undertaken purely for assessment purposes, it is likely that some deci-

sion(s) must be made about how to modify operations or plan investments to improve resilience. 

After completing a baseline RAP through the preceding steps, it is possible and desirable to 

populate the metrics for a system configuration that is in some way different from the baseline in 

order to compare which configuration would provide better resilience. This could be 

 a physical change (e.g., adding a redundant power line); 

 a policy change (e.g., allowing the use of stored gas reserves during a disruption); or 

 a procedural change (e.g., turning off equipment in advance of a storm). 

Because the metric(s) and process for populating them are complete by this RAP step, all that is 

required is to repeat that calculation for the alternate system description. 

                                                 
17
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4.  RESILIENCE METRICS 
 

Standardizing a framework for developing metrics and a process for resilience analysis to use 

across different energy infrastructures allows for consistent decision making and sharing of 

lessons learned. Each infrastructure can then go even further and use a common set of metrics 

that are useful to most stakeholders within that domain. However, the RAP is not intended to be 

so prescriptive that it inhibits applying the general principles to unique problems. The RAP was 

intentionally designed to be flexible enough to allow for new or different domain-specific metrics 

while retaining the general principles that allow better assessment of resilience and evaluation of 

resilience improvements. This flexibility also applies to local- versus national-level problems. 

4.1 Metrics: Measures of Resilience 
The resilience metric framework that most effectively achieves these goals is a probabilistic 

assessment of consequence to extreme events, described in Figure 4 as a probability distribution 

of consequence. The units of consequence are not specified in the framework, but must be 

defined during the resilience improvement process, resulting in a resilience metric. This 

probability distribution effectively accounts for the uncertainty associated with a limited 

understanding of future performance of the systems under threat. 

 
Figure 4.  The resilience framework is a probability distribution of consequence to an extreme event(s). A 

resilience metric is a probability distribution of specific consequence to specific extreme event(s). 

4.1.1 The Metric Is in Terms of Threat 
Each resilience metric is presented in terms of a particular threat or set of threats. This tells the 

person using the metric what types of extreme events are being considered in the estimation of 

resilience (e.g. “resilient to what?”). More than one threat could also be represented by a single 

distribution. Only by being explicit about the threats being considered can the resilience metric 

quantify the uncertainty surrounding consequences of those threats. 

4.1.2 The Metric Is Based on Performance 
Although the resilience metrics will be used to assess the consequences of a threat, they must also 

assess how well the energy system fulfills its intended goals. This means that the resilience 
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metrics are directly related to system performance. Performance-based metrics are not directly 

based on system characteristics, but instead measure how well the system delivers on its intended 

purpose during and after the threat. For example, barrels of oil demanded but not delivered would 

be a measurement of how well the oil supply system performs after an earthquake. This is in 

contrast to attribute-based metrics (e.g., gallons of oil reserves available), which are 

complementary and useful, but not a sufficiently valid predictor of resilience. For instance, the 

number of spare transformers an electric utility has on hand improves resilience, but by how 

much? Without a measure of performance that is dependent on the number of additional spare 

transformers, the utility cannot make a cost-benefit decision on the number of spares to keep on 

hand. While often more difficult to populate, performance-based resilience metrics deliver the 

necessary information to make this type of decision. 

4.1.3 The Metric Measures Consequence 
Estimating or measuring the raw performance of energy infrastructures may not deliver the nec-

essary information to quantify a system’s resilience in the eyes of certain parties. For example, a 

municipality may care about how many people are able to continue working after an extreme 

event. In this example, the number of citizens able to work is a unit of consequence, and it is 

highly dependent on energy infrastructure performance. This is why the resilience metric frame-

work calls for a transformation from indicators of system performance to measures of 

consequence. Consequence relates most directly to the fulfillment of social needs in these 

scenarios. It is likely that some users of this framework may choose to consider the system 

performance as the representative consequence, which is a reasonable simplification for some 

circumstances. 

4.1.4 The Metric Accounts for Uncertainty 
Understanding an infrastructure’s resilience to a certain class of threats often means that most, if 

not all, possible instances of the threat have never been experienced by that infrastructure. To 

develop an estimate of performance and consequence in the event of these unexperienced threats, 

modeling the system will be necessary. These models will inherently have several uncertain 

parameters or relationships. By quantifying this uncertainty and propagating it through the 

models, a probability can be associated with each consequence estimate, thereby developing the 

probability distribution that is the resilience metric. 

4.1.5 The Metric Effectively Captures Resilience 
Given the working definition of resilience in PPD 21, it is necessary to show how the metric (a 

consequence probability distribution) measures a system’s ability to prepare, withstand, adapt, 

and recover from potentially high-consequence, low-probability events. These four attributes and 

associated properties of resilient infrastructures, as described in Figure 5, are incorporated into 

the resilience metric by estimating their effect on the system performance, and ultimately their 

effect on consequence. For example, a system that recovers more quickly from disruption will 

have improved performance to one that recovers slowly. The improved performance is what is 

reflected in the metric, not the attribute that lead to that performance. Quantifying the impact of a 

system’s attributes on performance will create a link between performance-based and attribute-

based resilience metrics, and is therefore an important area for further research. 
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Figure 5.  Infrastructure system attributes that affect the resilience metric. 

4.1.6 The Metric Is Not a Value Judgment 
The resilience metric as stated here is not intended to be a declaration of requirements for any 

party. It provides a framework for assessing and improving resilience—as using speed 

measurements as a proxy for danger is a framework for assessing driver safety. This metric—a 

probability distribution of consequence—is a proxy for resilience, and it can be used to assess an 

infrastructure’s resilience. It makes no supposition of what the metric’s value should be for 

certain goals (e.g., it does not require the speed limit to have a 55 miles-per-hour threshold). 

4.1.7 Multiple Metrics Are Often Necessary 
Resilience metrics should be germane to the decision for which they are being used, and as a 

result, multiple metrics are often necessary. This could be the case when the decision is based on 

consequences that are either nontranslatable or when the translation is politically sensitive 

(e.g., loss of human life versus economic productivity). Many decision makers are already 

comfortable using multiple metrics 

with seemingly incongruous units. 

Often two or three metrics will be 

presented along a Pareto frontier, 

allowing for initial elimination of 

inferior alternative sets
18

. However, as 

the set of metrics becomes large—

larger than three, for example—current methods struggle to present a completely objective set of 

comparable alternatives. This hampers the decision maker’s ability to remain objective. 

Visualization of the multiple-objective consequence space with inclusion of probabilistic 

estimates of uncertainty represents a strong need for additional research. 

4.1.8 System-Level Models in Resilience Metric Computation 
A critical aspect of resilience analysis relates to the role of system-level models in computing 

resilience-metric values. We define a system-level model as a model that captures a system’s 

fundamental operation—subject to perturbations or shocks induced by external events 

(e.g., hurricanes and earthquakes) or human-caused events (e.g., terrorism). This includes both 
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delivery-of-service aspects (e.g., routing power in an electricity distribution grid) and recovery 

aspects (e.g., allocating crews to repair damaged equipment). 

Because they must additionally account for operational behavior in regimes outside the standard-

operations scope, the system models required for resilience analysis are different from those used 

in standard reliability operations. For example, while standard economic dispatch models used in 

power-grid operations account for the loss of a single system component, enforcing N-1 

reliability
19

, they do not capture decision-making processes under more extreme failure 

conditions. However, because standard operational models do capture key system behaviors 

(e.g., physical laws, in the case of the electricity grid), they are likely to serve as the basis for 

system models to enable resilience analysis. In contrast, system-recovery models are not 

standardized for most energy infrastructures, if they exist at all. 

Across disparate energy infrastructures, the specific nature of system models for resilience 

analysis can be and are expected to vary widely. Depending on the fidelity required by a 

particular analysis, system-model complexity can vary from simple spreadsheet models, to more 

complex optimization models. Sometimes, more complex models can facilitate improved results, 

specifically reductions in resilience-metric values. For example, consider a simulation-based 

system-recovery model. Typically, these models encode specific operational decision sequences 

(e.g., prioritizating crews to repair specific system components). In contrast, optimization models 

may treat decision sequences as variables, such that the solution of those models can yield 

improved decision sequences relative to a simulation model. The net result can be a reduction in 

consequence, and therefore a reduction in the value of a resilience metric. This example 

highlights the critical linkage between the nature of a system model and the quantification of 

resilience—system-level decisions impact the computed value of system resilience. 

Different resilience-analysis use cases can be accomplished with system models of varying 

fidelity. In planning contexts, coarse-grained models may be sufficient, as precise quantification 

of resilience is often not necessary. However, model fidelity must be significantly increased for 

both operations-oriented studies and operational use. 

In conclusion, system models of post-event operation and recovery are foundational in resilience 

analysis and reside at the center of our proposed resilience framework. System models are 

required to compute resilience metrics, and the specific nature of the system models influences 

the specific values of the resulting metrics. 

4.2 Resilience Analysis Use Cases 
Metrics are necessary to make informed decisions when alternatives exist, to create goals, and to 

assess improvement toward those goals. Today, there is no agreed upon method to quantify the 
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resilience of a system or community.
20

 This lack of resilience metrics makes creating resilience 

goals and driving systems toward those goals extremely impractical. 

The resilience metrics put forth in this report not only allow quantification, but they enable 

system operators to increase control and optimization to increase resilience. New system 

operating paradigms can be established where resilience is employed to provide feedback in real-

time to help minimize the impact of a catastrophic event on communities. Similarly, in the 

planning context, these metrics enable comparison between competing alternative investments 

based on resilience improvements, and design of optimal portfolios that maximize resilience 

under a constrained budget. 

The resilience use cases presented in the next sections are examples of the types of new analyses 

and decision-support capabilities enabled by creating resilience metrics. These new capabilities 

can be classified in two main areas-- planning and operations-- and can be applied to all 

resilience definition phases: preparation, withstanding, adapting, and recovery. 

First, the electric use case demonstrates the use of resilience metrics to quantify the grid’s 

baseline resilience when operating through a natural disaster. Electric system operation is then 

shifted from economics-based principles to resilience-based principles and results are compared 

to the baseline resilience. A grid planning example is also discussed, where hardening of 

infrastructure options are evaluated under the same natural-disaster threat. Lastly, an example of 

optimal budget allocation is presented, where resilience is maximized for the same investment 

level as in the competing hardening options. 

Second, a petroleum use case demonstrates the resilience metrics in the planning context by 

comparing the baseline resilience of the current system with that of an improved system through 

infrastructure investments. 

Third, a natural gas use case evaluates the impact that operating policies for a natural gas storage 

facility have on the resilience of a region as measured by the impact that a natural disaster has in 

its economy. 

All of the use cases are illustrative of the type of new capabilities enabled by the proposed 

resilience metric, highlighting the value of these new metrics. They also expose R&D gaps that 

should be addressed in the area of resilience. 
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5.  A FRAMEWORK FOR DEVELOPING RESILIENCE METRICS 
 

A resilience metric framework is defined as “the probability of consequence X given threat Y”. 

The framework does not specify the specific threat or consequence and can be applied broadly. 

The red curve in Figure 6, below, is a notional representation of a resilience metric, and because 

it does not specify the specific threat or consequence, we refer to it as a metric framework. 

 

Figure 6.  Resilience Metric Framework. 

Resilience metrics should be able to accomplish several key elements. The following 

requirements provide a means for developing a resilience metric framework. They must: 

 Be useful.  Metrics developed under this framework must be useful for decision making (by 

humans, computational analysis, or both). Decisions of interest include system planning 

decisions, real-time operations decisions, and policy decisions. 

 Provide a mechanism for comparison.  Applying the same metric to different systems 

should result in valuable information. Furthermore, the same metric must be able to 

differentiate between the resilience of a system that has not been hardened and one that has 

(either through infrastructure or operations enhancements). 

 Be useable in operations and planning contexts.  The same metric should be able assist 

decisions in both operating conditions (such as preconfiguring a system before a hurricane) 

and planning (such as burying electrical conductors). 

 Exhibit extensibility.  The metrics selected must be scalable in time and geography. The 

metrics should remain valid as technology progresses and more complex analytic methods 

become feasible. 

 Be quantitative. The framework must allow the development of metrics that can be used 

both qualitatively and quantitatively. 

 Reflect uncertainty.  It’s critical that metrics are populated using methods that will quantify 

the uncertainty of the result. Specifically, decisions being made based on a resilience metric 

value must be well informed by the certainty of that value. 
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 Support a risk based approach.  The metrics should reflect a specific hazard or set of 

hazards, the system vulnerability, and potential consequences to people (beyond the 

immediate system effects). 

 Consider recovery time.  Resilience metrics should reflect the amount of time that an outage 

occurs, either directly or indirectly. 

It is important to highlight a distinction between unpopulated metrics and populated metrics. One 

example of an unpopulated metric is miles per hour. This metric might be useful for measuring 

the speed of a vehicle, an airplane, a racehorse, or even an asteroid. Populating this metric might 

be simple (using a speedometer, in the case of a vehicle), or quite complex (advanced analysis, in 

the case of an asteroid) and the process of populating them need not be the same. The analytics 

associated with populating the metrics are critical, but strictly speaking, they are not part of the 

metric. Improvements in technology and analytics may allow improved certainty of a populated 

metric, but have no effect on the metric itself. 

In contrast to a metric that has been populated as an assessment of a system, goals are policy 

decisions that are used to populate metrics. For example, 55 miles per hour is a goal (or limit), 

which may be compared with the populated value of speed found on your car’s dashboard. These 

distinctions are important as this report discusses separately topics on (1) metrics, (2) analytic 

methods for populating metrics, and (3) resilience goals. The ability to populate resilience 

metrics and the decisions made based on them (e.g., policies, goals, and other actions to minimize 

the consequences of a hazard) are all extremely important and will be discussed in a later section 

of this report. 
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6.  POPULATING METRICS 
 

Resilience metrics take the form of a probability density function (PDF) of the consequence of 

interest. Figure 7 and Figure 8 provide examples of resilience metrics when economic impact 

and safety are the areas of interest. There may be many approaches to obtaining these PDFs with 

diverse levels of complexity. For instance, a complex approach might take into account many 

sources of uncertainty which may include uncertainty models that produce conditional 

probabilities for each realization, while a less complex approach might consider fewer sources of 

uncertainty and assume their realizations are independent. An even less complex analysis could 

assume there is a high degree of certainty in all of the analysis inputs and calculate a 

deterministic value while performing a sensitivity analysis to understand how small changes in 

those input values change the results. On the other hand, the presentation of the results might also 

be reduced by communicating features of the PDF such as mean value or Value at Risk (VaR). 

Regardless of the complexity of the analysis method employed or the form in which results are 

communicated, resilience metrics can still be used to help operate and plan systems in a way that 

improves their resilience to high-consequence, low-probability events. 

 

Figure 7.  Example of a PDF describing resilience in terms of economic impact ($M USD). 

 

Figure 8.  Example of a PDF describing resilience in terms of lives at risk. 
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7.  SIMPLIFIED, ANECDOTAL USE CASE 
 

This section describes how a hypothetical decision-making process could be augmented by using 

resilience metrics, and how those resilience metrics would be calculated and used. 

7.1 Define Resilience Goals 
In this anecdotal use case, the decision maker is a public electric utility that is wholly owned and 

operated by a municipality. This utility is 

making a planning decision related to 

improving their built infrastructure and is being 

asked by the mayor to explicitly account for 

the possibility of extreme events. The utility’s 

stated goal, in this respect, is to deliver energy 

at reasonable cost, with minimal negative 

impact to public productivity. They have 

experienced one hurricane in the past that caused public productivity to drop to unacceptable 

levels in the eyes of the mayor’s office, so they are primarily interested in improving resilience to 

future hurricanes. 

7.2 Define System and Resilience Metrics 
To define the system and metrics, the utility uses the stated goals and determines indicators of 

performance that will quantify how well these goals are being met. Ultimately, the decision of 

which resilience improvements in which to invest will be made based on an apples-to-apples 

comparison. So, the utility also must determine the units of consequence for the resilience metric. 

In this case, performance is measured by three indicators as described in Table 1: 

1. the capacity unavailable to serve load, 

2. the increase in cost of operation, and 

3. the decrease in labor hours by the public over the course of the recovery period. 

These performance indicators are dependent on grid behavior as well as the economic conditions 

for the utility and the community. Multiple systems will be assessed in order to calculate these 

indicators, such as the physical grid, the economics of grid operations, and the status of 

businesses and the labor force. The consequence will be measured by the overall economic 

impact to the community, which will be calculated using these performance indicators. This 

means that the resilience metric will be a probability distribution of economic impact. For this 

anecdotal use-case, the method of conversion of each performance indicator to economic impact 

is not addressed. However, it will be addressed in the detailed examples later. 

Table 1. Mapping between goals, performance indicators, and their definitions 

Goal Performance Indicator Definition 

Deliver energy Unavailable supply Nominal supply—Actual supply 

Reasonable cost Increase in operation cost Operating costs—Nominal costs 

Public productivity Decrease in labor hours Nominal labor hours—Actual labor hours 

The utility’s stated goal is to deliver energy at a 

reasonable cost, with minimal negative impact to 

public productivity, accounting for the possibility  

of extreme events such as hurricanes. 
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7.3 Characterize Threats and Determine Level of Disruption 
As mentioned, this utility has experienced one hurricane in the past, and the consequences were 

dire enough to spur the interest in resilience-enhancing electric grid investments. While they are 

most interested in potential hurricanes, they also recognize that other threats should be addressed 

for a more holistic understanding of resilience. In this case, the utility assembles data on how the 

hurricane disrupted the systems of concern, and how it impacted the performance indicators. 

They use this data to calibrate models of future hurricanes and how these systems may be 

disrupted. 

7.4 Define and Apply System Models 
The utility starts by calculating the performance indicators based on historic data from the past 

hurricane. By the definitions of the performance indicators in Table 1, the utility compares 

performance during the hurricane to nominal conditions, e.g., a statistically equivalent situation 

in which the threat was not present. They generate graphs of performance over time as presented 

in Figure 9. 

 
Figure 9.  Performance indicators through time for one particular hurricane instance. 

To the extent possible, the utility considers sources of uncertainty that would impact how their 

system might perform in the face of the next hurricane. They could be uncertain about the 

damage due to the hurricane, the intensity or path of the hurricane, the response of the public, or 

the resources available to them for repairs, to name a few factors. These uncertainties must be 

quantified to the best of their ability and then propagated through the models to understand the 

probability associated with the multiple estimates of performance. At this point, with multiple 

model runs indicating multiple possible futures and their associated probabilities, the utility is 

ready to calculate consequence. 
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7.5 Calculate Consequence 
The utility understands and models how the performance indicators translate to consequence in 

their system. Using this transformation algorithm, they come up with time plots of economic 

impact for each realization of a possible future from their multiple sets of performance indicators, 

shown at left in Figure 10. Using the probability associated with each of these possible futures, 

the accumulated consequence, which is measured in economic impact in this case, is plotted as a 

probability distribution, as shown at right in Figure 10. The utility now has a probabilistic 

assessment of consequence to hurricanes—one which helps them understand the potential 

economic consequences. Based on this metric, they can decide if they need to take additional 

action, such as system hardening to reduce these potential consequences, either the expected 

consequences (mean) or the value at risk, (the tail). 

 
Figure 10.  After transforming the performance indicators into consequence and accounting for 

uncertainty (left), the consequences for all realizations are plotted as a histogram of consequences (right). 

This histogram in converted into a probability density function, and is a resilience metric. 

7.6 Evaluate Resilience Improvements 
The metric presented in Figure 10 is a measure of the existing system’s resilience to hurricanes, 

but resilience could be improved if investments were made to modify the system. Each invest-

ment alternative will alter the system’s characteristics to be more resilient, perhaps by recovering 

faster, adapting more quickly, or mitigating initial impacts, and each alternative will have an 

associated cost to the public utility. To analyze the alternative investment scenarios, the utility 

would identify feasible investments that might be expected to increase the resilience (such as 

burying overhead conductors, adding floodwalls, or oversizing various equipment). These 

alternative investment scenarios would use the same modeling techniques just presented, but 

would first modify the system model to reflect the new improvements. For each particular 

alternative, they would calculate a new ensemble of disruption estimates, performance indicators, 

and finally a new resilience metric. By comparing the metrics associated with investment 

alternatives and to the do-nothing scenario as illustrated in Figure 11, they would decide if and 

how they would invest to increase their resilience. 
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Figure 11.  To analyze an investment alternative for resilience improvement, the resilience metric for the 

unimproved system is compared to that for the improvement alternative. 

The statistical mean of each distribution indicates the expected consequence to future hurricanes, 

so perhaps the utility would consider investing in the alternative if the difference between the 

mean for the alternative and the mean for the base case outweighed the project’s cost. In other 

words, the utility might expect an alternative to be worthwhile if it were expected to improve 

overall economic impact by more than the cost of that alternative. There are other ways to make 

decisions by comparing resilience metrics. The area of the distributions greater than a particular 

consequence value, VaR, could also be compared, as is pointed to by the extreme values arrow in 

Figure 11. The considered investment alternative in green decreases the probability of extreme 

consequences considerably, as indicated by comparing the two shaded areas under the curves. 

7.7 Incorporating the Resilience Improvement Process 
Using the resilience-metric framework, this hypothetical utility has determined an investment 

strategy that will not only improve resilience, but will do so cost effectively and will fit within 

their overall goal of delivering energy at a reasonable cost with maximum benefit to public 

productivity. It is imperative to include this resilience-improvement process within the overall 

planning process because the considered alternatives will also have an impact on day-to-day 

operations and associated metrics such as reliability and efficiency. 
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8.  ADVANCED USE CASE SUMMARIES 
 

The following section describes three specific cases in which the resilience metrics are 

analytically populated and used for decisions that are commonly found in industry. One use case 

for each of the three major energy sectors is assessed here: electric power, petroleum, and natural 

gas. Each use case follows the resilience-enhancing process presented in Section 7, populating a 

resilience metric as a critical part of this process. Table 2 outlines the threats, performance 

indicators, and measures of consequence that the use cases consider. 

Table 2. A summary of the specific aspects of the resilience-enhancing process that each use case covers 

Sector Threat(s) Performance Indicator(s) Consequence(s) 

Electric Power Hurricane MWh not served Economic losses 

Petroleum New Madrid Earthquake Barrels of fuel not consumed Added cost of fuel 

Natural Gas San Andreas Earthquake Mcf of gas not delivered Economic impact 

The three cases overlap in several dimensions. Each case focuses on one type of threat, one per-

formance indicator, and one measure of consequence—although this is not a necessary condition 

of the resilience metric framework. The electric power use case presents the use of a resilience 

metric to improve planning as well as operations decisions. The petroleum case focuses on an 

investment decision about pipeline modifications, while the natural gas case highlights a policy 

decision about how to manage storage. The cases show that while the process of populating and 

using the resilience metric can be standardized, the decisions to which it can be applicable as well 

as the type of models and algorithms necessary are wide-ranging and flexible. 

8.1 Electricity 
The electricity use case is an illustrative example of resilience analysis for the electric grid, using 

the proposed resilience framework and associated metrics. The analysis is organized around a 

series of mini use cases—ranging from 

 a baseline resilience computation for an existing system to 

 a comparison of alternative investment portfolios to enhance resilience to 

 an optimization of investments for enhanced resilience, given a fixed budget. 

Threat scenarios are defined to include hurricanes and consequences are shown as “demand not 

served” in one case and “economic losses” in another. For more details, see Appendix B. 

8.2 Petroleum 
This use case demonstrates one way to use the resilience framework to identify potential options 

to increase resilience and measure the increase in resilience due to implementing these options. 

Specifically, calculate the increase in resilience gained by re-engineering two major transmission 

pipelines to decrease down time after a large scenario earthquake in the New Madrid Seismic 

Zone. For more details, see Appendix C. 
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8.3 Natural Gas 
The use case presented exemplifies how resilience metrics can be applied to the natural gas 

infrastructure. Resilience is evaluated by calculating the overall impact on the economy ($) that 

natural gas delivery shortfalls would cause due to a natural disaster, a magnitude 7.8 earthquake 

at the San Andreas Fault near the Salton Sea. An engineering assessment for this type of 

earthquake was performed and results show that it would damage three important transportation 

corridors around the southern California area. For more details, see Appendix D. 
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9.  WHAT CAN BE SIMPLIFIED TODAY 
 

When modeling a system, there are two extremes in terms of complexity: 

 a model of high fidelity (and complexity) that provides a comprehensive output and 

 a model that is so simple that it can rarely be applied to real-world problems. 

Although both of these models have their place, often, the most useful model lies somewhere in 

between the two ends of this spectrum. The same can be said about the models employed for 

populating resilience metrics. More data and more refined models will result in high-fidelity 

results, but many models that require less data or are less computationally intensive are also 

useful. 

The appendices present several illustrative use cases where operating and planning computer 

models were employed to quantify resilience, perform control actions, choose between 

competing investment decisions, and form an optimal portfolio of investments in three different 

energy infrastructure types. These were developed to showcase a range of new capabilities that 

resilience metrics enable. And while their effectiveness depends on model accuracy, validity, and 

fidelity, these models are useful even when some of the analysis inputs and tools are simplified. 

A few simplifications that can be made using the metric-framework and analyses presented. They 

include: 

 Use historical data from previous events to replace computer-based models 

 Employ SME information to simplify threat characterization, reduce uncertainty sources or 

facilitate system analysis 

 Employ resilience-based strategies compiled in “best-practice” manuals or “playbooks” 

instead of real-time tools 

 Reduce the number of scenarios that describe threats or uncertainty 

 Simplify resilience-metric presentation from PDFs to key values on the PDF (mean; 

percentile, Value at Risk) 

9.1 How we can prepare for a more resilient framework 
The process can be used to support many different decision types—both strategic and 

operational—as well as by different entities for different purposes. It could be used in support of 

federal, state, and local policy decisions. It also provides decision-makers with a methodology 

that is transparent, traceable, and defensible—ensuring choices can stand up to the intense 

scrutiny that accompanies the allocation of limited, publicly funded resources. Within the private 

sector, this framework could provide support for decisions about where to deploy protective 

measures, create redundancies, or develop response plans. 

Another benefit of the process is with regard to complexity, insofar as it presents a method to 

evaluate resilience, but can be useful for varying degrees of analytic and modeling maturity. By 

design, the process is flexible. Not every step may be necessary for every system being analyzed. 

In addition, the tools and techniques are not intended to be exhaustive. As appropriate, analysts 
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should apply other tools based on the specific situation, the cost of implementing the tool, and the 

quality and type of analysis needed. The process also provides a roadmap for the research 

community to begin incorporating more advanced concepts as R&D matures. 
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10.  RESEARCH & DEVELOPMENT 
 

10.1 Furthering Resilience 
As described in Section 3, the RAP identifies seven key steps for assessing and improving energy 

infrastructure resilience. To provide a more robust capability over time, specific steps in the RAP 

will require additional R&D. As shown previously in this document, achieving improvements to 

the resilience of a given infrastructure requires varying levels of analytic representation depend-

ing on the threat and the infrastructure in question. RAP steps 2 through 7 can be analyzed with 

SME input and simple analytic representations. However, due to the complexity of these systems 

and the inherent uncertainty associated with the infrastructure threat, as well as the uncertainty of 

infrastructure disruption, more sophisticated analytic approaches are normally required. The 

desire to understand these complex systems in more detail—so that more robust, complete 

assessments can be obtained—is the basis for material improvement of the US energy 

infrastructure. A major part of this R&D effort must be ensuring this framework is practicable, 

useful, and ultimately adopted—or at a minimum, strengthens and informs resilience analysis and 

decision processes. 

The first step in assessing an energy infrastructure’s resilience is defining appropriate resilience 

metrics and calculating a quantitative measure for those parameters. Section 10.2 focuses on the 

R&D aspects of this important step. Once the energy system and its associated resilience metrics 

have been identified, crucial information is still required to populate them (i.e. evaluating the 

system’s overall resilience). Additional R&D is required in these areas as well. 

The primary elements of an R&D program in energy resilience should include further advance-

ments in the following areas. 

10.1.1 Characterize Threats 
Energy infrastructures are vulnerable to multiple threats, including both natural and man-made. 

More research is required to create better ways of evaluating these threats specifically focusing 

on the uncertainty associated with them. Also, not all threats are equally likely, and not all affect 

energy infrastructure the same way. For instance, a wind storm can cause considerable damage to 

the electric infrastructure but might have no effect on petroleum or natural gas infrastructure 

which is largely underground. For these reasons, it is important to include threat characterization 

as part of the R&D program. 

10.1.2 Determine Level of Disruption 
Once the threat to an energy infrastructure has been sufficiently characterized, the estimated level 

of disruption to the system must be determined. Though some capabilities currently exist for 

some structures (e.g., HAZUS), additional capabilities are required to estimate disruption levels 

to specific infrastructures. For example, as a natural disaster hits a region, uncertainty can exist 

about the extent of the damage it will cause to energy infrastructure system components. Analytic 

models must be developed and historical data collected to create capabilities that can accurately 

predict system conditions after a high-consequence, low-probability event occurs. 
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10.1.3 Define and Apply System Models 
To accurately determine a system’s resilience, good system-level models are required—

preferably with as much fidelity as possible. Further R&D is required to continue to improve the 

ability to describe these complex systems with more precision so as to improve the quality and 

fidelity of the assessments for decision makers. Specific attention should be given to system 

models that allow the removal of presumed portions of the system. Given an assessment of the 

disruption level caused by a particular threat, a robust system model must be able to effectively 

remove impacted portions of the system. With these components removed, the system model 

must be able to function reliably to determine the overall impact to the system performance. In 

addition, better system characterization after impact will allow for procedures and practices that 

will help energy infrastructure better withstand those event types. Additional R&D is required to 

improve these capabilities. 

10.1.4 Calculate Consequence 
As stated earlier, most energy systems are providing power for some larger purpose (transporta-

tion, health care, manufacturing, economic gain). Further research is required to determine appro-

priate analytic techniques to incorporate the uncertainty inherent in this RAP step. Various math-

ematical techniques are available, but further investigation is required to determine the appropri-

ate methods and their effectiveness. A comprehensive research program will benefit from 

including research in this area. 

10.1.5 Evaluate Resilience Improvements 
This step focuses on how to modify operational decisions or plan investments to improve resili-

ence. Further R&D is required to effectively quantify uncertainty for these evaluation processes. 

Computational methods should be developed to provide more robust methods for creating and 

evaluating proposed resilience improvements. 

It is important to note that the entire process to assess and improve an energy infrastructure’s 

resilience requires human involvement. From an operator executing procedures to an executive 

making financial-investment decisions, the behavior of humans is an important part of determin-

ing the resilience of an energy system. For this reason, further R&D is required to incorporate the 

human-in-the-loop aspects of each of the RAP steps. 

In summary, a robust, sophisticated energy infrastructure resilience R&D program should include 

investment in 

 more advanced, quantitative analytic methods; 

 the ability to incorporate uncertainty into all aspects of the resilience-problem domain; and 

 the incorporation of human behavior into the assessment process. 

Such a research program should be integrally connected with a strong stakeholder engagement 

activity. 



 Conceptual Framework for Developing Resilience Metrics for US Electricity, Oil, and Gas Sectors 

SAND2014-18019 47 September, 2015 

11.  MOVING FORWARD 
 

11.1 Identifying Specific Metrics that Could Be Generally Applied 

Across Many Different Systems 
Resilience is critical to stakeholders at many different levels and throughout many different infra-

structures. Standardizing a framework for metric development and a process for resilience 

analysis for use across different infrastructures allows for consistent decision-making and sharing 

of lessons learned. Each infrastructure can then go even further and use a common set of metrics 

that are useful to most stakeholders within that domain. 

However, the RAP is not intended to be so prescriptive that it inhibits application of the general 

principles to unique problems. This process was intentionally designed to be flexible enough to 

allow for the use of new or different domain-specific metrics while retaining the general princi-

ples that allow for better assessment of resilience and evaluation of resilience improvements. This 

flexibility also applies to local versus national level problems. 

Selecting the appropriate metric for a given analysis should be driven by the stakeholder goals. 

Metrics in this context should be selected for their ability to enable resilience decisions or assess-

ments. However, data availability is often a constraint, so comparison of data that is already 

being collected about the system in question and possible metrics under consideration may help 

focus early efforts when funding and time are limited. Data-collection needs can then be 

documented and planned for in later cycles. 

While the selection of specific consequence-based metrics should be based on the goals identified 

by stakeholders in the first step of the RAP, common system output measures in each infrastruc-

ture are likely to be useful regardless of the consequence metric. One example of such a perform-

ance indicator for electric power would be “load not served” over the course of the disruption. 

Tying these performance indicators to relevant measures of consequence, like economic loss or 

hospital beds unavailable due to power loss, is a challenge that would greatly benefit from further 

R&D. 

One advantage of pursuing these research activities at a national level is that it will help ensure 

consistency of methodology and enable discussions between regions or localities. A library of 

suggested performance indicators and recommended methods for translating those system outputs 

to some common consequence measures is a worthwhile and necessary national R&D pursuit. 

11.2 Stakeholder and Buy-In Process 
An important first step in using resilience metrics to improve nationwide energy resilience is to 

vet them and insert them into the energy industry’s lexicon. This will require a concerted engage-

ment process that will consider how the metrics will ultimately be used and by whom. The resili-

ence-metric framework fulfills the needs of multiple parties in this regard, so multiple conversa-

tion threads will be necessary to capture the full breadth of potential uses. During this process, it 

may be important to highlight that the resilience metrics themselves do not necessitate a change 
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in business practices, but instead augment current practices by fitting well into existing cost/bene-

fit and risk-management frameworks. 

As the resilience metrics are vetted and ultimately become part of the energy-industry lexicon, 

focus will be placed on how the resilience analysis and improvement process will be implement-

ed. The goal of this implementation will be defined by multiple stakeholders in both the public 

and private sectors, but should ultimately focus on improving energy infrastructure resilience 

with respect to the consequences chosen by those stakeholders and in consideration of threats 

chosen by those stakeholders. The benefit of the resilience analysis and improvement process as 

it is presented herein is that it provides a guide for measuring resilience, but allows flexibility for 

different communities or groups to determine the consequences and threats relevant to them. 

A key goal of the resilience-improvement process is to facilitate communication—especially 

among different types of decision makers and across interdependent energy infrastructures. This 

will not be possible unless decisions are made as to how to populate metrics. Units of conse-

quence, approaches to uncertainty, and consideration of threats will need to be decided upon in 

an inclusive manner for multiple types of resilience-improvement decisions as well as multiple 

regions. 

There will be situations where the units of consequence must be standardized so that resilience 

can be compared across multiple parties, such as in a regulatory or common-investment decision 

process. For instance, there may be a situation where a government entity secures funding for an 

investment in energy resilience, but wants to do so equitably and with greatest impact to commu-

nity resilience. To compare alternatives for this investment, the units of consequence will need to 

be the same across all analyses and should also be normailzed. These units should be informative 

for the government entity, but also be feasible for potential bidders on these projects to calculate. 

In a different scenario, a regulation may be placed that requires a certain level of resilience, but 

the reporting requirements to prove compliance should not place undue burden on the reporting 

parties. In this case, the units of consequence will be related to what the regulated parties can 

feasibly measure and calculate. By considering the capabilities and data collection performed by 

the parties affected by the resilience-improvement process, it will complement, not replace 

existing risk frameworks for asset protection. 

Similar to the considerations for the units of consequence, consideration of threats will be im-

portant to gain legitimacy for the resilience improvement process. Just as units of consequence 

may need to be standardized for different types of decisions, the threats considered will likely 

vary regionally. The considered threats will take into account the probability of that threat in the 

region as well as the potential consequence. For instance, analysis of resilience in the Midwest 

will likely consider tornados, while a similar analysis on the West Coast may not need to con-

sider this threat. A regional process for which threats to consider will need to be developed that 

includes objective information from multiple parties about the likelihood and potential conse-

quence of multiple threat types. 
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Finally, standardization will be important for incorporating uncertainty in the resilience metrics. 

This process may not involve a complete set of data, so expert judgment can be used where data 

does not exist. Some categories of uncertainty will be more controversial to quantify than others. 

For instance, quantifying the uncertainty surrounding hurricane path and intensity may lead to 

little controversy, while uncertainty associated with the economic impact of loss of energy to one 

neighborhood versus another could create substantial controversy. It is important to understand 

which uncertainty categories are most critical to estimate accurately, and which are likely to 

cause controversy. The former criterion could be assessed using modeling and sensitivity 

analysis, while the latter may require polling. When a category fulfills both of these criteria, it 

will require careful attention and buy-in from multiple affected parties. These categories will 

most certainly require a public processes. 

11.3 Development of Sector-Specific System Models 
An integral aspect of the proposed resilience framework is the underlying system models, which 

capture the behavior of the infrastructure when subjected to a threat. These behavioral models are 

in contrast to standard, typically reliability-centric operations models. In particular, for a given 

infrastructure, it is necessary to specify recovery and restoration processes, in addition to 

processes invoked by operators when a disruptive event is unfolding. 

Such models do not presently exist for the electricity, petroleum, and natural gas infrastructures. 

Thus, a key R&D challenge in the application of the proposed resilience framework consists of 

development of baseline system models. We expect the baseline models to initially involve ex-

tensions of existing reliability-oriented system models, which focus strictly on delivery sustain-

ment—typically at minimal cost. Significant extensions of these base models will need to be 

developed, particularly in the areas of recovery and restoration modeling. The purpose of the new 

models is to facilitate resilience-metric computation, through a reasonable-fidelity model of the 

underling system and the consequences associated with loss of delivery. 

Development of resilience system models should proceed in partnership with industry, to ensure 

their acceptance and ultimate adoption. The models are likely to vary in fidelity, depending on 

the specific type of resilience analysis (e.g., planning or operations) being considered. For 

purposes of long-term adoption, development should initially focus on low to moderate-fidelity 

system models, to ensure that key properties are captured and the range of target resilience 

analyses can be conducted. Then, as the initial models are better understood, fidelity can be 

incrementally improved. 

11.4 Consequence Quantification 
Another major component of the proposed resilience framework involves specifying a given in-

frastructure’s loss-of-delivery consequences. Two key issues dominate the specification process: 

(1) identifying high-level consequences and (2) computing loss-of-delivery consequences. 

Identifying high-level consequences involves defining one or more consequences critical to a 

particular resilience analysis. For example, a particular stakeholder may be interested in resili-

ence as expressed through both “safety” and “economic” factors. However, significant research 
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and practical challenges are associated with precisely defining such factors. Further, because the 

precise definition is stakeholder-dependent, any industrial instantiation of the proposed resilience 

framework must proceed with an industrial or governmental partner. Initial pilot studies will gain 

insight into the difficulties in defining consequence along a number of informal dimensions, 

which will aid further adoption of the framework. 

Computing loss-of-delivery consequences for a particular system involves either leveraging or 

developing a deep understanding of the dependent infrastructure served by the system under 

consideration. As with identifying high-level consequences, a significant portion of the process is 

social and involves interaction with domain experts. In this phase, the system must be analyzed 

from a loss-of-delivery consequence perspective, with appropriate parameterizations made for 

inclusion into resilience system models. Again, such analysis will necessarily proceed with an 

industrial or governmental partner, to promote adoption and to identify issues associated with 

subsequent applications of the proposed resilience framework. 

11.5 Conclusions and Recommendations 
A framework for energy resilience metrics has been created such that: 

 Energy resilience metrics quantify the expected consequence due to events that have low 

probability but potentially high consequence. Consequences focus on social welfare, 

extending beyond system impacts. 

 The resilience metrics are based on the performance of the system, as opposed to being 

attributes of that system. 

 The resilience metrics incorporate the uncertainty associated with limited information 

about the system and the threat. 

 Resilience metrics quantify performance given uncertainty, providing insights into risk 

management and cost/benefit processes for planning, operations, and policy building. 

A resilience analysis process has been created that explains how to use resilience metrics. The 

process is flexible enough for use by different stakeholders and infrastructures. Stakeholder goals 

should drive the selection of metrics used for an analysis within the framework provided. 

Continued research is essential: 

 More research is needed to improve quantification of human/societal consequences based 

on reduced system performance in a disruption. Key areas for R&D investment include 

multi-category uncertainty quantification, modeling and simulation of disruption, 

recovery and repair, communication of risk, and adaptive system operation algorithms. 

 Developing a library of suggested performance indicators and recommended methods for 

translating those system outputs to common consequence measures is a necessary national 

research and development pursuit. 

 Data availability will be a challenge in the early stages of adopting these methods, so 

some effort is likely to be needed with respect to data collection and establishing 

associated best practices. 
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Outreach and collaboration is necessary to define the types of decisions that will use resilience 

metrics, as well as the metrics' units of consequence, selection of threats, and quantification of 

uncertainty. 

A stakeholder group should be created for the refinement and standardization of metrics for 

electricity, petroleum, and natural gas for the validation of this resilience metric framework. 

Specific areas that should be addressed include: 

 Differentiate reliability metrics from resilience metrics with input from state, federal and 

regional regulatory authorities and other stakeholders 

 Determine federal, state, and local government roles 

 Work toward stakeholder buy-in and coordination: federal and state regulators, utilities, 

asset owners, and other key stakeholders 

 Conduct an expanded case study using data from a major utility (in coordination with that 

utility) 
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APPENDIX A:  RELIABILITY AND OTHER COMPLEMENTARY 

METRICS 
 

This appendix has been added to describe the very mature set of reliability metrics that already 

exist and are routinely used as the basis for regulatory assessment and rate recovery. The mixing 

or confusing of reliability metrics with resilience metrics, therefore, should be avoided so to 

avoid substantial opposition from those using reliability metrics. This appendix highlights that 

reliability metrics are nearly always attributed to high-probability, low-consequence events. Even 

for metrics such as SAIDI and SAIFI, reported values of these statistics are scrubbed of data that 

result from severe storms or other high-consequence events so that public utility officials can use 

these statistics to compare normal operating reliability across several utilities. Another distinction 

between reliability metrics and the resilience metrics is that reliability metrics do not attribute 

cause to the metric (a load is de-energized but without regard to why or how), whereas resilience 

metrics do (e.g. a hurricane caused the load to be de-energized). We note that systems may be 

considered reliable without specifying what is threatening the system, but when discussing 

resilience, systems are always resilient to a particular threat or set of threats. Finally, reliability 

addresses the ability of a system to accomplish its objective; which says nothing about how the 

system response may affect the community or other social elements. Again, resilience bridges 

this gap by extending the system response to a social conclusion. 

In a general context, reliability is the ability of a component, device, or system to perform its 

intended function. Related to power systems, reliability is assessed based on how well the system 

supplies electrical energy to its customers. There is a tradeoff between how reliable the power 

system is and the investment needed to achieve or maintain reliability levels. This is illustrated in 

Figure 12 where the change in incremental cost of reliability is depicted as the ratio of the change 

in reliability ΔR to the change in investment cost ΔC. It should be noted that a reliability of 100% 

is never attainable. 
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Figure 12. Incremental cost of reliability. 

In practice, it is extremely difficult to find the true relationship between investment cost and 

reliability because of the complexity of the power system, the random nature of processes within 

the system (e.g., unscheduled component outages), and the subjectivity of outage costs. 

Reliability indices and measures are efforts to quantify reliability in the power system. In order to 
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deal with its complexity, power system reliability assessment divides the system into generation, 

transmission, and distribution. Probabilistic techniques are employed to plan for uncertainty in 

the load, component availability, and more recently, output power available from renewable 

energy sources. 

The following sections are a summary of the indices and techniques that are most frequently 

applied in the reliability assessment of power systems. 

A.1 Resource Adequacy 
Reliability techniques and indices related to generation capacity are employed in power system 

planning where long time horizons (i.e., years) are considered. These methods help determine 

how much capacity is needed in order to meet expected future demand while keeping enough 

reserves to be able to perform corrective and preventive actions. The issue of whether installed 

capacity is sufficient to meet the electric load is known as resource adequacy. Descriptions of 

resource adequacy indices are presented next. 

A.1.1 Loss of Load Probability (LOLP) 
This index estimates the probability that the load will exceed the available generation during a 

given period. However, it gives no indication as to how severe the condition would be when the 

load exceeds available generation. For instance, two events can have the same probability of 

occurring (i.e., the same LOLP value), and the first one can belong to a generation deficiency of 

less than 1 MW, while the second one can belong to a generation deficiency of a few hundred 

MW. LOLP is expressed mathematically as: 

𝐿𝑂𝐿𝑃 = 𝑝(𝐴 − 𝐿 < 0) (1) 

where A is the available capacity available to meet the system peak load L, and p denotes 

probability. Generally, LOLP is calculated by convolving the capacities and forced outage rates 

(FOR) of the installed generation fleet (Hsu, 1985). This produces a capacity outage probability 

table (COPT) that contains the probability of having outages of different MW levels. An example 

of a COPT is given in Table 3 for a system with 6 generating units and a forced outage rate 

(FOR) of 0.08 for each unit (NERC, 2011). 

Table 3: Example of capacity outage probability for a 6-generator system with FOR of 0.08 for each generator 

MW-out MW-in Probability LOLP 

0 300 0.60635500 1.0 

50 250 0.31635913 0.00000026 

100 200 0.06877372 0.07728587 

150 150 0.00797377 0.00851214 

200 100 0.00052003 0.00053838 

250 50 0.00052003 0.00001835 

300 0 0.00000026 0.00000026 

Alternatively, a Monte Carlo simulation can be employed to calculate the LOLP of a system. 

Then LOLP can be expressed mathematically as: 
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 𝐿𝑂𝐿𝑃 =
∑ 𝑆𝑒

𝑁
𝑖=1

𝑁
 (2) 

where Se is a simulation in which at least one significant event occurs. A significant event occurs 

when load and operating reserve obligations exceed resources or some event threshold limit. N is 

the number of years in the sampling period. Typically, there is one simulation for each hour of 

each year and LOLP is given as a percentage. 

A.1.2 Loss of Load Expectation (LOLE) 
This index is widely used when evaluating new generation scenarios in the planning process. It is 

generally defined as the average number of days on which the daily peak load is expected to 

exceed the available generating capacity (Allan, July 1992). Assuming a Monte-Carlo simulation 

is employed, LOLE in hours/year can be defined mathematically as (Billinton, 1991): 

𝐿𝑂𝐿𝐸 =
∑ 𝑟𝑖

𝑁
𝑖=1

𝑁
 (3) 

where i is the sampling year, ri is the loss of load duration in hours and N is the number of years 

in the sampling period. LOLE and LOLP are directly related. Hence, LOLE has the same 

weakness as LOLP of providing no information about the severity of the condition. 

A.1.3 Expected Unserved Energy (EUE) or Loss of Energy Expectation (LOEE) 
This index is defined as the expected energy that will not be supplied due to those occasions 

when the load exceeds the available generation. Assuming a Monte-Carlo simulation is 

employed, EUE in MWh/year can be defined mathematically as: 

𝐸𝑈𝐸 =
∑ 𝐸𝑖

𝑁
𝑖=1

𝑁
 (4) 

where Ei is the energy not supplied in MWh and N is the number of years in the sampling period. 

A.1.4 Effective Load Carrying Capability (ELCC) 
The ELCC is the contribution that a generator makes to overall resource adequacy. It quantifies 

the additional amount of load that can be served due to the addition of an individual generator (or 

group of generators) while maintaining the existing reliability level (Keane, 2011). ELCC is also 

known as capacity value. For conventional generators, the ELCC can be calculated based on their 

respective capacities and forced outage rates (FORs). These two are convolved using an iterative 

method to produce a capacity outage probability table (COPT) that indicates the probability of a 

given MW outage in the entire system. 

Because wind capacity and FOR cannot appropriately describe the available wind power during 

peak load hours, the ELCC calculation must be modified to accommodate the uncertainty 

associated with wind. The IEEE preferred method to calculate the capacity value of wind consists 

of the following steps (Keane, 2011): 

1. The COPT of the power system is used in conjunction with the hourly load time series to 

compute the hourly LOLPs without the presence of the wind plant. The annual LOLE is then 
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calculated. The LOLE should meet the predetermined reliability target for that period. If it 

does not match, the loads can be adjusted, if desired, so that the target reliability level is 

achieved. 

2. The time series for the wind plant power output is treated as negative load and is combined 

with the load time series, resulting in a net load time series. In the same manner as step 1, the 

LOLE is calculated. It will now be lower (and therefore better) than the target LOLE in the 

first step. 

3. The load data is then increased by a constant load ΔL across all hours using an iterative 

process, and the LOLE recalculated at each step until the target LOLE is reached. The 

increase in peak load (sum of ΔLs) that achieves the reliability target is the ELCC or capacity 

value of wind. 

The use of Monte-Carlo simulation to evaluate multiple years is recommended in order to 

minimize the error due to inter-annual variation of wind. 

Other methods for assessing the capacity value of wind exist such as using synthetic time series 

of wind in case there is a limited availability of historical wind data. One of the key factors in this 

case is to capture the correlation between wind output and load due to underlying weather 

conditions in the stochastic models of wind and solar plants. 

A noniterative method to approximate the ELCC of wind that requires minimal modeling and is 

computationally inexpensive was proposed by D’Annunizo and Santoso (D’Annunzio, 2008). 

This method models a wind plant as a multistate unit that can exist in one or more partial capacity 

outage states Cj. Hence, a capacity outage individual probability table (COIPT) can be created 

with multiple discrete power levels (e.g., 0, Cj, 2·Cj, 3·Cj) up to the total capacity of the wind 

plant CA. The probability pj of a partial capacity outage state Cj is calculated by counting the 

occurrences when the power output is equal to CA-Cj divided by the total number of power output 

data points. This can be expressed mathematically as: 

𝑝𝑗 =
Number of ocurrences when power output is 𝐶𝐴 − 𝐶𝑗

Total number of power output data points
 (5) 

When a power output value falls between two discrete capacity outage states, it is counted as an 

occurrence for the highest value. 

In addition to the wind plant COIPT, the method uses various load duration curves to determine 

the relationship between the LOLE of the system and an increase or decrease in the typical load 

demand. The new load duration curves are produced by taking the original system load curve and 

shifting it by a given number of percentages (e.g., –20%, 17.5%, –15%, …, 0%, ..., 15%, 17.5%, 

20%). Mathematically, this can be expressed as: 

𝐿𝑐 = 𝐿𝑡 ± 𝑐 ∙ 𝐿𝑡pk
 (6) 

where Lc is a new load duration curve, Lt is the typical load duration curve with peak load Ltpk. 
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Then, the LOLE is computed for each new duration curve. The resulting data points for LOLE as 

a function of peak load Lpk are fitted to an exponential function of the form: 

𝐿𝑂𝐿𝐸(𝐿pk) = 𝐵 × 𝑒𝑚×𝐿pk  (7) 

Thus, an estimated value of m is found. The ELCC can be computed using: 

ELCC = [− ln [∑ 𝑝𝑗 × 𝑒𝑚×(𝐶𝑗−𝐶𝐴)

𝑘

𝑗=1

]] ×
100%

𝑚 × 𝐶𝐴
 (8) 

where  Cj and pj are the partial capacity outage states (MW) and corresponding individual 

probability, respectively. The nameplate capacity of the added unit is CA. 

Results from a case study shown in (D’Annunzio, 2008) showed that this method produced 

accurate results, within 3% of the ELCC value estimated employing the ELCC classical method 

described at the beginning of this section. 

A.2 Transmission Reliability Indices and Measures 
Reliability assessment of the bulk power system (i.e., transmission and generation) is divided into 

resource adequacy and system security. The previous section dealt with the issue of resource 

adequacy. This section now addresses the issue of system security, which refers to the question of 

whether the transmission system can move energy from generation to bulk supply points, while 

staying within operational limits and being capable of withstanding disturbances (Allan, Nov. 

1992). In other words, the reliability of the transmission system must satisfy both dynamic 

conditions (i.e., withstanding a transient disturbance or small signal disturbance) as well as the 

static conditions (i.e., voltage, frequency, and thermal limits). Past performance indices applied to 

the transmission system include: system unavailability; unserved energy; number of incidents; 

number of hours of interruptions; number of voltage excursions beyond limits; and number of 

frequency excursions beyond limits. 

As previously mentioned, the NERC has a very large number of standards that are employed by 

electric utilities in the mainland and that are oriented toward improving and assessing the 

reliability of interconnected electric systems. 

A.2.1 Review of NERC Reliability Standards 
The following is an overview of a subset of NERC’s reliability standards. The standards 

mentioned below are organized alphabetically, as presented in NERC’s complete set of 

Reliability Standards for the Bulk Electric Systems of North America (NERC, 2009). 

Real Power Balancing Control Performance (BAL-001.1a) 

This NERC reliability standard is aimed at keeping the steady-state frequency within defined 

limits. It defines the control performance standards (CPS1 and 2). In general terms, these control 

performance standards are statistical metrics of a balancing authority’s ability to closely follow 

its demand in real time. 
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In interconnected systems, frequency deviations in combination with scheduled energy 

interchange values are employed to determine the mismatch between generation and load within 

balancing authorities. 

Automatic Generation Control (BAL-005-0.1b) 

This standard establishes requirements for a balancing authority (BA) to calculate the Area 

Control Error (ACE) necessary to perform AGC. Examples of these requirements are maintaining 

regulating reserves that can be controlled by AGC, ensuring data acquisition for ACE calculation 

occurs at least every 6 seconds by having redundant independent frequency metering equipment, 

performing hourly error checks to determine the accuracy of control equipment, and periodically 

testing and recharging back-up power for control centers. 

Operating Reserves (BAL-STC-002-0) 

This standard provides a set of qualitative requirements that defines available operating reserves. 

These requirements are qualitative and do not set arbitrary operating reserve values, but give BAs 

a framework to determine reserve capacity necessary for reliable operation (e.g., operating 

reserves must be able to replace generation and energy lost due to forced outages of generation or 

transmission). 

Cyber Security (CIP-002 to CIP-009) 

These standards provide a framework on management and maintenance of cyber assets in power 

systems. These standards include functions such as identifying assets that are critical for 

managing the reliability of power systems and the vulnerabilities of those assets. 

Telecommunications (COM-001-1.1) 

This standard requires each BA to ensure proper functioning of their telecommunication 

facilities. Additionally, written operating procedures and instructions should be available to 

enable system operation when a loss of telecommunication capabilities occurs. 

Emergency Operations Planning (EOP-001-0) 

This standard requires each BA to “develop, maintain and implement a set of plans to mitigate 

operating emergencies”. An example of an emergency is a violation of the system operational 

limits. In such case, a balancing authority must have a plan to reduce load sufficiently to avoid 

system failures. Such a plan should include aspects such as communication protocols to be 

followed, controlling actions to resolve the emergency and staffing levels for the emergency. 

Disturbance Reporting (EOP-004-1) 

This standard requires BAs to record disturbances or unusual occurrences that result in system 

equipment damage, interruptions or jeopardize the operation of the system in order to study them 

and minimize the likelihood of similar events occurring in the future. 

System Restoration Plans (EOP-005-1) 

This standard requires BAs to develop plans and procedures to ensure that resources are available 

for restoring the electric system after a partial or total shut down. Restoration plans include items 
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such as training personnel, verification of restoration procedures through simulation and testing 

of black start units. 

Plans for Loss of Control Center Functionality (EOP-008-0) 

Each utility must develop a contingency plan to continue reliability operations in the event that 

its control center becomes inoperable. This contingency plan includes requirements such as 

procedures for monitoring and controlling generation, voltage frequency, and critical substation 

devices; and maintaining basic communication capabilities without relying on data or 

communication from the primary control center. 

Documentation of Black start Generating Unit Test Results (EOP-009-0) 

This standard addresses the testing of black start units and its corresponding documentation in 

order to ensure these units are capable of performing this function. 

Transmission Vegetation Management Program (FAC-003-1) 

This standard is aimed at minimizing outages and other events due to vegetation located on 

transmission right-of-ways and maintaining clearances between transmission lines and 

vegetation. It requires the transmission owner to have and update a formal transmission 

vegetation management plan. 

Modeling and simulation of Interconnected Transmission System (MOD-010-0 and MOD-

012-0) 

The main purpose of these standards is to establish consistent models to be used in the analysis of 

the reliability of an electric system. It puts the burden of providing appropriate simulation models 

on power system component owners. For instance, it requires generator owners provide steady-

state and dynamic modeling and simulation data to the regional reliability organization, which is 

the entity responsible for performing reliability assessments. 

Aggregated Actual and Forecast Demand and Net Energy for Load (MOD-017-0.1) 

This standard addresses the need for records of past and real-time load and demand-side 

management data. This data is necessary to forecast load and to perform future system reliability 

assessment. The standard gives some specifications on requirements such as “integrated hourly 

demands in MW for the prior year” and “monthly peak hour forecast demands in MW and Net 

Energy for load in GWh for the next two years”. 

Reporting of Interruptible Demands and Direct Control Load Management (MOD-019-0.1) 

This standard addresses the need for records and forecasts on interruptible loads and direct 

control loads to be employed in the system reliability assessment. 

Verification of Generator Gross and Net Real and Reactive Power Capabilities (MOD-024-

1 and MOD-025-1) 

This standard makes generator owners responsible for ensuring that accurate information on real 

and reactive power capability of the units is available. This information is employed in the 

reliability assessment process. The standard includes requirements on the periodicity of data 

verification and reporting and the type of information to be reported. 
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System Personnel Training (PER-005-1) 

This standard requires that each balancing authority, reliability coordinator and transmission 

operator use a systematic approach to training in order to address company specific reliability 

related tasks. Such training should be updated periodically in order to modify or add new tasks. 

The training program should also be evaluated periodically. 

Analysis and Mitigation of Transmission and Generation Protection System Mis-operations 

(PRC-04-1) 

This standard requires the transmission, distribution and generator owners to analyze protection 

system mis-operations and implement corrective actions to avoid similar events in the future. 

Transmission and Generation Protection System Maintenance and Testing (PRC-005-1) 

This standard requires transmission, distribution and generator owners to have a testing and 

maintenance program for protective devices in their systems. The program should include testing 

intervals and testing and maintenance procedures. Records of test results and maintenance should 

be maintained. 

Other standards are parallel to this one, but applied to under-frequency load shedding (PRC-008-

0) and under-voltage load shedding (PRC-011-0) equipment. 

Under-frequency Load Shedding Performance Following an Under-frequency Event (PRC-

009-0) 

Transmission and distribution owners are required, under this standard, to perform an analysis of 

each under-frequency event to determine the performance of the under-frequency program. For 

instance, the cause of an under-frequency event, and load shedding set points and tripping times 

should be reviewed periodically. 

Under-voltage Load Shedding Program (PRC-010-0-PRC-011-0, PRC-021-1-PRC-022-1) 

Similarly to the under-frequency load shedding program, the under-voltage load shedding 

(UVLS) provides preservation measures to avoid voltage instability or collapse. The design and 

effectiveness of UVLS measures should be evaluated periodically (e.g., every 5 years). The 

UVLS equipment shall be maintained and tested periodically and data on the technical 

characteristics (e.g., breaking operating times, voltage set points and clearing times) shall be kept 

and updated. 

Transmission Relay Loadability (PRC-023-1) 

This standard requires that transmission operators adjust their relay settings so that they do not 

limit transmission capability of lines while still performing their protective actions appropriately. 

The standard gives quantitative guidelines for relay setting such as loadability at 0.85 per unit 

voltage and a power factor angle of 30 degrees. 

Normal Operations Planning (TPO-002-0) 

This standard addresses the need for planning in the power system at several time horizons, and 

communication of these plans or changes during operation between the different parts of the 

electric system. It requires the system operator to set plans for reliable operation through a 
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“reasonable” future time period; plans to meet unscheduled system changes using a single 

contingency (i.e., N-1) planning at a minimum; and to perform studies of next-day and current 

day conditions to determine system operating limits. Additionally, generator owners are required 

to communicate any changes in real output power capabilities and characteristics of their units. 

Monitoring system conditions (TOP-006-1) 

This standard requires that critical reliability parameters be monitored in real-time. These 

parameters include real and reactive power flows, line status, voltage, tap-changer settings, and 

system frequency. It also calls for weather forecasts and past load patterns to be used by the 

system operator in order to predict near-term load. 

Response to Transmission Limit Violations (TOP-008-1) 

This standard requires transmission operators to take immediate actions when system operating 

limits are violated. It also asks for the transmission operator to collect sufficient information and 

to use analysis tools to determine the cause of the violations in an effort to mitigate them. 

System Performance under Normal to Extreme Conditions (TOP-001-0.1 to TOP-004-0) 

These standards address the need for periodic simulation and assessment of system operation in 

order to ensure the reliability of the system in the long term. This assessment should be made 

annually using a near-term forecast (i.e., 1–5 years) and a long term forecast (i.e., 6–10 years). 

The purpose of these studies is to demonstrate that the system is able to perform up to a set of 

system standards for each of the following conditions: 

 normal operation, 

 loss of a single bulk electric system element, 

 loss of two or more bulk electric system elements, 

 and following extreme conditions. 

The set of system standards can be found on page 950 of NERC, 2009 and is also attached in 

appendix A of this document. The transmission operator is required to upgrade or add 

components in order to meet future system needs and comply with the aforementioned standards. 

Assessment Data from Regional Reliability Organizations (TPL-006-0) 

This standard requires regional reliability organizations to provide system data, reports and 

system performance information necessary to periodically assess reliability and compliance. 

Examples of such data are resource adequacy plans; electric demand forecast and forecast 

methodologies; assumptions and uncertainties; supply-side resource information; and 

transmission system information. 

Generator Operation for Maintaining Network Voltage Schedules (VAR-002-1) 

This standard requires generator owners to provide reactive power control and voltage control 

necessary to maintain voltage, reactive power flows and resources within specified operating 

limits. Additionally, it mandates generators to notify system operators of any changes in reactive 

power capability. 
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A.3 Distribution Reliability Standards 
Several metrics are employed when evaluating distribution system reliability. These metrics can 

be divided according to the length of the interruption and other data employed in their calculation 

as sustained interruption indices, load based indices, and other indices (momentary interruption). 

A momentary interruption refers to any interruption lasting less than 5 minutes and caused by the 

operation of an interrupting device such as circuit breakers. Consequently, a sustained 

interruption is any interruption lasting more than 5 minutes (IEEE, 2004). 

Indices based on sustained and momentary interruptions take into account the number of 

customers affected by the interruption and the time it takes to recover from them. On the other 

hand, load based indices are those that focus on the load interrupted. The next section presents 

the most employed sustained interruption indices. Other distribution reliability indices can be 

found in Appendix B. 

A.3.1 Sustained Interruption Indices 
System Average Interruption Frequency Index (SAIFI) 

This index indicates the frequency at which the average customer experiences a sustained 

interruption in the time interval under analysis (e.g., 1 year). Mathematically, this is given as: 

SAIFI =
∑ Total number of customers interrupted

Total number of customers served
 (9) 

System Average Interruption Duration Index (SAIDI) 

This index indicates the average time an average customer experiences sustained interruptions in 

the time interval under analysis. Mathematically, this is given as: 

SAIDI =
∑ Customer interruption durations

Total number of customers served
 (10) 

Customer Average Interruption Duration Index (CAIDI) 

This index indicates the average time that it takes to restore service after a sustained interruption 

in the time interval under analysis. In this index, customers with multiple interruptions are 

counted multiple times. It is expressed mathematically as: 

CAIDI =
∑ Customer interruption duration

Total number of customers interrupted
=

SAIDI

SAIFI
 (11) 

Average Service Availability Index (ASAI) 

This index indicates the fraction of time that a customer has received power over a predefined 

period of time. 

ASAI =
Customer hours service availability

Customer hours service demand
 (12) 

The denominator is calculated by multiplying the number of customers served by the hours in the 

predefined period of time. 
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Customers experiencing multiple interruptions (CEMIn): This is the ratio of total customers 

that experienced more than n sustained interruptions over the study period. It is expressed 

mathematically as: 

CEMI𝑛 =
Total number of customers that experience > n sustained interruptions

Total number of customers served 
 (13) 

A.4 Economic Perspectives on Electric Grid Reliability 
Most of the previous discussion relates to grid reliability measurement in the short-term with 

existing capacity and resources determined and unchangeable. Not only is the focus of the 

previous discussion short-term, it is completely supply-side centric. The issue of optimal 

reliability is not addressed. In contrast, much of the reliability economics literature pertains to the 

determination of the optimal level of reliability as desired by electric consumers. This literature is 

summarized in Appendix E. The incorporation of consumers’ views of reliability value into the 

determination of optimal reliability requires that means are available to quantify this value. Three 

general techniques for quantifying consumers’ values of reliability have been used: 

 Market based methods attempt to examine actual customer behavior in response to various 

service options or investments in reliability to infer customer outage costs as evidenced by 

customers who sign up for non-firm service rates or install backup generation; 

 After the fact measurement of actual outages that have occurred; 

 Survey methods use customer responses to postulated outage scenarios to measure outage 

costs. 

Many utility efforts to evaluate the outage costs of their customers have employed survey 

techniques most frequently and have attempted to elicit responses to: 

 Direct costs: customer incurred costs of an outage of specified duration and advance warning 

time; 

 Willingness to pay: customer outlay to avoid an outage of specified duration and advance 

warning time; 

 Willingness to accept: payment received from utility to compensate for an outage of specified 

duration and advance warning; 

 Revealed preference: question elicits customer response regarding specified combinations of 

increasing price (electric rates) and reliability (reduced outages); 

Surveys are popular with utilities because they allow the utility to focus on the particular 

preferences of their customers and the unique outage and operating characteristics of their utility 

systems.
21

 

                                                 
21

 In contrast, survey methods are not popular with economists, although they are sometimes used. The concern is 

that consumers will respond to hypothetical questions by interpreting what they believe the interviewer wants to 

hear, or, based on their supposition of the reason the question is being posed. Or, consumers might try to game 

the outcome of the survey. 
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An integrated reliability planning conceptual model presented by (Burns and Cross, 1990) is 

shown in Figure 13. Total system cost, Ctotal, is the sum of system costs, Cs, and outage costs, Co. 

Outage costs decline as the level of reliability increases. Correspondingly, system cost increases 

as investments to achieve increased reliability are made. Other things equal the optimal level of 

reliability occurs where the marginal increment to system costs needed to achieve an increment to 

reliability is equal to the incremental decrease in outage costs resulting from this level of 

reliability. While it is difficult to discern from the drawing this would occur at the minimum 

point of the total cost curve. 

 
Figure 13.  Hypothetical outage, system, and total cost as functions of reliability level. 

Increased reliability requires increased capacity (larger reserve margin) which increases system 

costs; but outage costs decline with increased reserve margin, leading to the model shown. A 

simple mathematical model is derived from specification of these concepts and is manipulated to 

express marginal changes in expected unserved energy for marginal changes in capacity. This 

model is reproduced herein with some minor differences in notation. 

An aspect of electric system reliability is that, while the regulated utility does not experience 

directly the costs of outages, its customers do. The utility regulatory commission internalizes the 

utility customers’ costs; but it also internalizes the interests of the subject of its regulation—the 

utility. Hence, it is appropriate to develop a model that addresses both. An available model results 

in a reasonably simple framework within which to operationalize the determination of optimal 

reliability from an engineering-economic standpoint. This model employs the fact that reliability 

is functionally related to two dependent variables—system costs and outage costs. Reliability is a 

function of the amount of capacity on the system in relation to peak load. More capacity 

increases system costs but reduces outage costs. Because these dependent variables are inversely 

related an optimal capacity (from the societal point of view) can be determined by the capacity 

that equalizes incremental capacity costs and incremental outage cost reduction. 

Total cost for electric service, 𝑇𝐶, is determined by system costs, 𝑐𝑠 , and outage costs, 𝑐𝑜. 

System costs include capacity, operation and maintenance, and all other costs to supply energy. 

Outage costs include costs customers incur during an interruption of service including lost output 

in all sectors as well as spoiled inventories. This yields, 
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𝑻𝑪 =  𝒄𝒔  +  𝒄o . (14) 

Reserve is related to capacity of resources on the system and the peak system load at any point in 

time as follows 

𝐓𝐂 =  c𝐬  +  𝐜𝑹 =  𝑨 –  𝑳 (15) 

where 𝑅 is the margin of reserves, 𝐴 is the available capacity to meet load and L is peak system 

load where it is assumed that this is the annual peak load. 𝑅, 𝐴, and 𝐿 are all considered random 

variables. A reliability event takes place whenever 𝐿 exceeds 𝐴 and 𝑅 becomes negative. One 

measure of the frequency with which this happens (or could happen) is the loss of load 

probability (LOLP), a statistical measure, as implied by its name. This can be expressed as 

𝐓𝐂 =  𝐜𝐬  +  𝐜𝑳𝑶𝑳𝑷 =  𝒑 (𝑹 < 𝟎), (16) 

where 𝑝 denotes probability. 

When 𝑅 becomes negative load shedding, brownouts, or blackouts occur all of which result in 

some quantity of unserved energy which we designate as 𝑢. Then, 

𝐓𝐂 =  𝐜𝐬  +  𝐜𝒖 =  𝑬 (𝑹 < 𝟎), (17) 

where 𝐸 is interpreted as expectation. 

An operational rule of thumb has arisen through repeated use of the reserve margin as a static, 

point-estimate of system reliability. It is related to 𝑅 as defined above but is not, strictly, a 

statistical measure. Using this point estimate we can redefine (17) 

𝒎 =  𝒂 –  𝒍 (18) 

where 𝑎 is the total capacity of resources available to meet load and 𝑙 is the system highest peak 

load. Equation (18) is closely related to (15) and is the point estimate drawn from a statistical 

distribution. 

For the time period under consideration 𝑎 is the total quantity of resources available and 𝑙 is the 

maximum value of the load random variable. As in equation 4 above, 𝑢 is related to and, more 

strongly, a function of 𝑚. Any addition of capacity or reduction of peak load increases the 

reserve margin. As 𝑚 increases 𝑢(𝑚) decreases. Determination of the optimal𝑚, 𝑚∗ requires the 

inclusion of outage costs. One interesting feature of this model to note is that, in effect, two 

options can improve reliability: installing additional capacity and/or reducing peak load. These 

two options can be operated upon independently. Thus, optimality includes consideration of 

which of the two options is least expensive to implement. More than likely, at least up to some 
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level of reduction, load shifting from the demand side, has the prospect of being more cost 

effective purely because no additional, or very little, capital investment is required.
22

 

We can now relate marginal capacity to the reserve margin, 𝑚. Designate 𝑠 as marginal capacity 

cost per MW and let 𝑞 denote a unit of outage cost represented in units of MWh. Then, assuming 

that the function 𝑢 can be evaluated the following can be defined.
23

 

𝒅(𝒎)  =  𝝏𝒖/𝝏𝒎, ∀ 𝒎. (19) 

In utility operational practice system operators will invoke emergency actions to avoid allowing 

operating reserves to fall to zero. These actions are initiated sequentially presumably in ascending 

order of cost and include shedding interruptible customers, voltage reductions, and customer 

appeals for load reduction. The final action is implementation of rotating outages. With each 

action, 𝑖 corresponding expected unserved energy 𝑢𝑖 can be interpreted as the energy “supplied” 

but the emergency actions, 𝑖. With 𝐼 emergency actions, the 𝑖th being that of rotating blackouts, 

we can write 

𝐝(𝐦)  =  𝛛𝐮/𝛛𝐦, ∀ 𝐦𝒖 =  ∑ 𝒖𝒊

𝑰

𝒊=𝟏

 (20) 

Then the marginal reduction in outage cost defined in 6 becomes 

𝐝(𝐦)  =  𝛛𝐮/𝛛𝐦, ∀ 𝐦𝐮 =  ∑ 𝐮𝐢

𝐈

𝐢=𝟏

 (21) 

where 𝑑𝑖(𝑚) =  𝜕𝑢𝑖/𝜕𝑚. This expression can be evaluated analytically or by a differencing 

approach. 

The costs per unit of unserved energy, 𝑞𝑖, resulting from each emergency action 𝑖 are required to 

complete the model. Then, at the optimal value of 𝑚 designated as 𝑚∗, the following relationship 

holds, 

𝐝(𝐦)  =  𝛛𝐮/𝛛𝐦, ∀ 𝐦𝒔 =  ∑ 𝒒𝒊𝒅𝒊
𝑰
𝒊=𝟏 (𝒎∗). (22) 

As mentioned, the evaluation of 𝑑𝑖(𝑚∗) is available from a probabilistic reliability framework or 

from production cost models. One method of estimating electric consumer outage costs is 

described below. 

With estimates of the value of service to customers, expected unserved energy (kWh) can be 

converted to dollar values. This process can be carried out explicitly in a production cost 

                                                 
22

 Selective load reduction can be implemented administratively with large electric consumers who could be induced 

to shift electricity consumption by a variety of financial payments. A fully integrated retail market would require the 

installation of significant additional infrastructure as is being discussed in Smart Grid programs. 
23

 The function can be evaluated either analytically if it is assumed to be continuous and differentiable or can be 

assessed by “differencing” as suggested by the Burns and Cross. 
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modeling framework. Estimated values of service obtained by PG&E for their customer classes 

are shown in Table 4 Similar techniques could be employed by HECO to estimate customer 

outage costs by customer class. 

Table 4: Direct Cost of a Summer Afternoon Outage with 1-Hour Notice 

Customer Class 

Average Outage Cost 

(1988 $/kWh) 

Residential 4.05 

Commercial 39.69 

Industrial 6.78 

Agricultural 3.53 

System Weighted Average 18.63 

Using the derived model and customer outage costs estimates as shown Figure 13 the authors are 

able to derive a relationship such as that shown in Figure 14. 

 

Figure 14.  Variation of reserve requirements with respect to customer outage costs.
24

 

Several interesting observations emerge from this paper. First, the significantly higher outage 

cost estimates for the commercial sector are notable as compared to all other customer categories 

that are somewhat closely grouped. While it could be expected to be somewhat higher, to have it 

be so much greater than the other sectors is surprising. Further, these data are from 1988 so 

clearly they would not reflect current economic values. Furthermore, there may be economic and 

social changes that affect the outage costs as seen by consumers. For example, our economy has 

become significantly more service than manufacturing based. And there might be significantly 

more home production (telecommuting) today than in earlier years that would increase these 

customers’ views of outage costs. Finally, because we don’t include the value of output of “true” 

home production services (child care, home schooling, grocery shopping, food preparation, 

cleaning services, etc.) in the national accounts, customers whose households consist of stay-at-

home moms and dads may undervalue the cost of outages. These observations suggest that 

periodic administration of outage surveys and re-estimation of customer outage costs should be 
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performed by utilities. One of the points that Turvey made in his book on electricity economics is 

that service reliability must be the same for all customers. Burns and Cross also emphasize that 

their model is based on the assumption of equivalent reliability and cost for all customers. 

However, they point out that, because customers have distinct needs, a system of uniform power 

supply reliability is not the most economical means to meet individual needs. And we know from 

practice that all customers do not, in fact, receive the same level of reliability due to local system 

effects and differences. 

A.5 Reliability Looking Forward 
The new focus of reform efforts in the electric industry is to introduce and diffuse market 

competition as the means of allocating resources needed to supply electricity to customers. Much 

of this effort is currently focused on the supply side and the introduction and refinement of 

wholesale markets for electricity supply. Meanwhile, increased interest is evident toward 

development of retail markets and integration of these markets with the wholesale markets. 

Toward this end focus is increased on “demand response” as a form of load balancing. The 

understanding that both demand and supply have the potential to work in concert to balance 

system supply and demand and can help to improve capacity use for the supply system as well as 

keep electric rates (prices) lower for customers. The concurrent interest in Smart Grid that would 

provide the platform for customers to express their demand schedule for electricity supports this 

wholesale/retail market integration. A number of states including Texas and states in the PJM 

area have programs to elicit demand response. It is possible in this broadened environment to 

envision a market for reliability that would allow consumers to specify their requirements for 

power quality. These trends are congruent with observations and findings of market designers 

who have a goal of making electric power markets more efficient and effective. 

(Hogan, 2005) has made the case that reliability levels must be worked out in a market in which 

every consumer has the option to participate. He brings the value of lost load (VOLL) back into 

the discussion. (Cramton and Stoft, 2011) have stated this more explicitly: “If reliability is not 

individualized then individuals know that they will not receive less reliability if they pay less for 

it, because they can be given less only if everyone is given less. Consequently, everyone will 

refuse to pay for collective reliability and all will attempt to enjoy a free ride.” (p. 24.) 

A.6 Integrated Reliability Index 
NERC is developing an integrated reliability index aimed at increasing the transparency of the 

reliability assessment process. This integrated risk index (IRI) tries to include all aspects of the 

reliability assessment process and combine them to produce a single number ranging from 0 to 

100. This single number indicates the historical risk found in a power system based on three main 

characteristics: major system events experienced, conditions that indicate if an adequate level of 

reliability has been attained, and compliance to reliability standards (NERC, 2012). 

A review of the integrated risk index calculation proposed by NERC was performed by David 

Robinson (Robinson, 2011). His findings suggest that no connection exists between the metric 

proposed by NERC and changes made to a power system in order to improve reliability. This 

review is found in Appendix C. 
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APPENDIX B:  GRID RESILIENCE METRICS AND DECISION-CONTROL 

ARCHITECTURES 
 

As discussed previously, a key property of grid-resilience metrics is that their computation 

requires knowledge of both (1) the set of potential disruption events and (2) control actions taken 

to mitigate those potential disruption events. In other words, grid resilience is conditional upon 

both the disruption events and the actions taken to mitigate those events. As a result, a critical 

aspect of the proposed research involves concurrent development of the decision-control 

architecture(s) in which grid resilience metrics can be used. This linkage is independent of the 

specifics of whether the grid resilience metrics are being evaluated in operations or planning 

contexts, although the specific context is likely to dictate the fidelity of the decision-control 

architecture under consideration. 

It is also in the context of decision-control architectures that grid-resilience metrics are truly 

differentiated from more traditional reliability metrics. Specifically, grid-resilience metrics allow 

for differentiation between and selection among possible likely future system states or trajectories 

(defined by the set of potential disruption events). This differentiation provides the foundation for 

advanced decision frameworks to support anticipatory mitigation, operate-through, and recovery 

situations induced by contingency and more extreme disruptions to grid infrastructure. 

In the course of this discussion, we intentionally remain open to the specific algorithms and 

software packages providing specific functionality. However, we note that multiple instances of 

much of the necessary functionality presently exists within various research institutions across 

the US. 

In addition to the set of potential threats defined (e.g., hurricane or other extreme weather 

events), the decision-control architecture must endogenously identify potential (short-term) 

contingency events such as line overloads. Such analysis proceeds in the context of an estimate of 

the uncertain system state, which in turn relies on the following core algorithmic technologies: 

state estimation, predictive forward simulation, and uncertainty quantification. The purpose of 

this analysis is to identify future situations (e.g., instabilities and subsequent component failures) 

that are likely to drive the system—if unmitigated—into low-resilience states. 

Given a set of potential threats (both exogenous and endogenous), the next task is to develop a 

control algorithm that most efficiently moves the system to the state of maximum expected 

resilience. Such a system requires a description of the grid control elements (defining the action 

space) and the range of their feasible values in each projected trajectory. To address this 

challenge, one must leverage the mathematical formalisms of stochastic and robust optimization, 

and associated solution algorithms. Sandia and other national labs have successfully leveraged 

these decision-making paradigms in power-grid contexts of generation expansion and daily 

reliable operation to facilitate optimal decisions that maximize the expected value of a given 

performance metric across a scenario set. 
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Optimization can also play a role in scenario generation. Because the grid, due to growth of re-

newables and demand, is operating closer to feasibility boundaries, cascading collapses are more 

likely to cause major blackouts. Currently, the North American Electric Reliability Corporation 

(NERC) requires power systems to be “N-1 secure,” capable of absorbing the loss of a single 

component. However, given that component failures are not necessarily independent events 

(e.g., in the case of hurricanes), it is often desirable to consider near simultaneous failures of 

multiple components (N-k events). Identification of high-impact failure combinations is an 

extremely challenging combinatorial optimization problem. Recent state-of-the-art approaches 

avoid explicit enumeration and screening of contingency states by performing worst-case inter-

diction analysis via solutions of bi-level programs. The scalability of these approaches to prac-

tical-sized systems, however, remains a challenge. There exist preliminary successes in this area, 

scaling to systems with several hundred buses. However, further research is required to achieve 

scalability to full-sized industrial systems. 

 
Figure 15.  Decision-control architecture for grid resilience. 

In Figure 15, we summarize the key components of decision-control architectures for grid resili-

ence, emphasizing the interrelationships between the various components. The functionality of 

these components is now summarized, and their connections are described at a high level. 

 Network (System) Description.  The network or system description provides a full specifi-

cation, at the necessarily level of fidelity, of all system components. Examples include trans-

mission-line electrical properties, generator performance characteristics, and relay states. 

While typically viewed as static, the control architecture (specifically the stochastic optimiza-
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tion component) can initiate actions that modify the network/system state (e.g., switching a 

line off). 

 Resilience Metrics.  Resilience metrics are mathematical computations that quantify some 

aspect of system resilience, taking as input (1) parameters relating to the risk and conse-

quence of particular system failures and (2) a specification of the current system state. In 

practice, a resilience metric is typically a real-valued function. However, we leave open the 

possibility that the function is not closed-form, requiring a simulation or other algorithmic 

process to compute. 

 Uncertainty Quantification.  Due to limited precision and availability of sensor measure-

ments, system state is necessarily uncertain. When operating at performance margins, 

accounting for this uncertainty is critical—ignoring the fact can lead to component failures, 

which in turn can lead to subsequent failures and system degradation. The purpose of the 

uncertainty-quantification component of a resilience decision-control architecture is to 

(1) perform state estimation under uncertainty (e.g., using supervisory control and data 

acquisition [SCADA] systems), and (2) to couple the state estimate with forward simulation 

(e.g., PSLF or SPICE), in order to predict subsequent system states—with corresponding 

probabilities. These predictions comprise a set of scenarios, above and beyond any predefined 

sets of disruption events. The latter are not a function of state estimation, but are rather 

exogenously specified. In contrast, the former are endogenous, and rely on current system 

state estimates. 

 Control Actions.  This component represents a description of the set of control actions avail-

able to a system operator, whether human or algorithmic. Examples of control actions include 

generator dispatch level adjustment, line switching, renewables curtailment, and allocation/ 

positioning of system-restoration resources. 

 Stochastic Optimization.  The above components either generate or directly serve as inputs 

to the stochastic optimization component, which rigorously determines those near-term con-

trol actions that will maximize system resilience. This maximization proceeds in the context 

of either one resilience metric or a weighted combination of multiple resilience metrics. The 

maximization is conditioned on the set of input scenarios, both those resulting from uncer-

tainty quantification and predefined disruption events. Stochastic optimization will identify a 

single set of (nonanticipative) control actions that maximizes resilience across the set of 

scenarios, either in terms of a simple expectation or a risk-oriented aggregate measure. Thus, 

resilience should be viewed as a histogram, due to the consideration of a diverse set of 

scenarios, each representing a possible future system state. 

It is important to observe that while we believe the identified components should be present in 

any such architecture, the fidelity is allowed to vary dramatically, depending on the usage 

context. For example, coarse-grained models of stability and other dynamics can be leveraged in 

long-term planning models, which can similarly rely on a small set of predefined disruption 

events. Similarly, many of the components can be simply simulated (e.g., the products of state 

estimation). Finally, we note that the resilience quantities at the bottom of the figure reinforce 

key properties of the metrics: their distributional nature (due to dependence on disruption 
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scenario and uncertainty in system state) and the presence of disparate and likely competing 

metrics. 
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APPENDIX C:  ELECTRIC USE CASE 
 

This appendix details an analytic example of resilience analysis for the electricity grid, using the 

proposed resilience framework and associated metrics. The presentation is organized around a 

series of analysis use cases, ranging from a baseline resilience computation for an existing 

system, to comparison of alternative investment portfolios to enhance resilience, to optimization 

of investments for enhanced resilience given a fixed budget. 

C.1 Illustrative Test System 
To illustrate the use of our resilience framework and metrics in the context of the electricity 

section, we consider a simple, well-understood, and widely used model of an electricity grid: the 

IEEE 118 bus test case. This model—available from http://motor.ece.iit.edu/data/itscuc—consists 

of 91 loads, 54 generators, and 186 lines. A high-level schematic of this test system is as follows: 

 
Figure 16.  IEEE 118 Bus Electrical Test System. 

The resilience framework assumes the availability of a systems operations model. For the 118 

bus test case, we consider a standard security-constrained unit commitment model with economic 

dispatch, representing system reliability operations for a period of 24 hours. Network physics are 

approximated using DC optimal power flow models. 

In terms of mathematical constructs, the unit commitment operations model is expressed as a 

mixed-integer linear optimization model, with algebraic constraints and objectives. This decision 

formalism contrasts with simulation formalisms, in that it allows for efficient global optimization 

of operational models. Specifically, the use of such algebraic optimization models facilitates 

automatic determination of optimal investment portfolios, subject to fixed, pre-specified budgets. 
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C.2 Defining Threat Scenarios 
A key concept in the proposed resilience framework is the following: an infrastructure is 

designed to be resilient to a specific set of possible disruptions. In other words, the set of possible 

events is finite and pre-specified, at an appropriate level of abstraction. A number of 

methodologies can specify such events. However, for purposes of simplicity, we adopt the notion 

of a scenario tree. A scenario tree is a decision tree that specifies, via branching, the nature of the 

range of disruptions to which we are designing an infrastructure to be resilient to. 

For a posited system, we consider three classes of high-level threats: a hurricane, an earthquake, 

and a terrorist incident. These three event classes correspond to the first branches from the root 

on the tree, yielding three “children” nodes. In general, probabilities can be assigned to each 

specific event class—assuming sufficient information is available for their estimation. More 

commonly, the event classes reflect all-hazard events, such that the probabilities are treated as 

uniformly distributed. In a real system, the high-level threat scenario identification process is 

expected to be an output from an iterative and highly interactive stakeholder-driven process. In 

this electricity use case, the first stage of the scenario tree can be depicted as follows: 

 
Figure 17.  Threat scenario tree representing three “children” nodes. 

Given a high-level threat specification, the next stage in the scenario analysis process is to further 

refine the description of each specific threat. For illustrative purposes, we focus on the hurricane 

scenario. In the case of a hurricane and other natural disruption events, significant historical 

information and forecast models can be used to guide specification of possible realizations of the 

general threat. For example, the scenario tree node representing a hurricane is expanded as 

follows: 
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Figure 18.  Detailed expansion of the hurricane threat. 

Note that at this point in scenario analysis, probabilities for specific event realizations are likely 

to be available, or at minimum, relative weightings of likelihood. 

Finally, each realization of an event must be translated into physical damage of the infrastructure 

system under consideration, e.g., the electricity grid. Pictorially, we illustrate this process for one 

of the hurricane events as follows: 

 
Figure 19.  Damage realizations for a Category 2 hurricane, landfall at high tide. 

For a real-world system, system experts should be consulted to estimate the damage to equipment 

given the occurrence of the threat. In the context of the IEEE 118 bus test case, we arbitrarily 

define system damage under this specific hurricane event realization as follows. For generation, 

we sample the number of distinct failures from a normal distribution, with mean 20 and standard 

deviation 5; the failures are then allocated uniformly and randomly to the generation fleet. We 

follow an analogous process to simulate damage to lines, using a normal distribution with mean 

40 and standard deviation 7. These damage profiles are intended to be strictly notional. As with 

high-level threat scenario identification, actual damage realization profiles will need significant 

domain expertise and stakeholder involvement in order to be accurately specified. 

C.3 Specifying Consequences of Loss of Delivery 
In the context of the electricity grid, loss of power—typically quantified as MW hours of load 

shed—is a very indirect method to quantify the true consequence associated with loss of delivery. 

For purposes of resilience analysis, more salient metrics quantify aspects of safety, security, or 

economic impacts. In this analysis of the 118 bus test case, we consider economic losses 

calculated using hypothetical relationships, e.g., due to industrial facilities being disrupted. In 
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order to translate from loss of load at each bus to consequence, we introduce piecewise linear 

transformations—an example of which is given as follows: 

 
Figure 20.  Example function relating MW not served at a bus to economic loss. 

The particular transformation was chosen to reflect the typically nonlinear nature between loss of 

delivery and consequence. In reality, specification of this transformation requires deep 

knowledge of both the system under consideration and any associated dependent infrastructure. 

C.4 Baseline Resilience Assessment 
The first resilience analysis of the grid system involves computation of a baseline resilience 

value. The intent of this analysis is to demonstrate the initial use of a resilience metric for any 

infrastructure, which is to establish a rigorous and quantifiable description of system resilience. 

Without such a baseline measure, it is difficult to assess the benefit conferred by any proposed 

investments to improve system resilience. 

We consider a hypothetical hurricane event, and sample 100 realizations of potential damage 

using the distributions of damage to generation and line resources introduced above. For each 

scenario, we compute a minimal-cost commitment and dispatch, which additionally minimizes 

loss of load. Given this dispatch, we then compute the cumulative economic losses incurred due 

to loss of service, using the piecewise linear transformations described previously. We assume no 

recovery is possible in the short term (i.e., 24 hours), such that generators and lines that have 

failed remain disabled for the scheduling horizon. 

A histogram of cumulative economic losses incurred across the sampled scenarios is shown 

below: 
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Figure 21.  Resilience metric for the baseline system. 

While many scenarios yield minimal economic losses, there are a nontrivial number of scenarios 

in which the economic loss is significantly larger than the mean of $990.3M. Translation from 

the distribution to a single summary statistic can proceed in a variety of ways, including a simple 

mean (as shown in the figure) or tail-oriented statistics such as Conditional Value-at-Risk 

(CVaR). 

Beyond establishing a baseline resilience quantity, it is possible to simply operate the system to 

directly minimize consequence—as opposed to an economic dispatch. Under this paradigm, we 

are able to largely mitigate the expected consequences and VaR associated with the hurricane 

event. We graphically show the impact of shifting operations from an economic dispatch 

(minimizing operating cost) to a resilience dispatch (minimizing expected resilience) as follows: 

 
Figure 22.  Resilience metrics for the same system under economic dispatch (left) and resilience dispatch 

(right). 

In other words, by exposing consequence as a resilience metric and directly optimizing against 

this metric, it is possible to significantly reduce the consequences associated with a posited event. 

Mean = 
$990.3M 
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C.5 Restoration and Recovery Analysis 
Another aspect of resilience quantification relates to the time and costs associated with system 

recovery and restoration. To illustrate resilience analysis using these concepts, we augment the 

baseline 118 bus test case with a recovery and restoration model. This process is modeled as 

occurring over a three day period following the initial event. We assume a fixed budget for 

recovery and restoration resources, and impose the following: 

 Five crews are available, 3 for line restoration and 2 for generator restoration 

 Each crew requires 3 hours to repair a line 

 Each crew requires 18 hours to repair a generator 

 Lines are repaired in a random order 

 Generators are repaired largest-to-smallest (in terms of capacity) 

Mirroring the previous baseline resilience analysis methodology, we compute restoration and 

recovery costs for the associated disruption scenarios. The resulting histogram of cost is as 

follows: 

 
Figure 23.  Resilience metric focused on restoration and recovery. 

As with the analysis of economic losses incurred, methods for reducing the recovery and 

restoration distribution to a single metric include both expected value computations and tail-

oriented statistics. 

C.6 Investment Analysis 
Given a baseline resilience analysis for a particular infrastructure system, the next logical step is 

to assess how different investment portfolios are likely to improve system resilience, and by how 

much. To illustrate the execution of this type of analysis, we consider the assessment of two 

competing investment options for the modified 118 bus test case. In Option A, engineers propose 

to build flood walls around generators with greater than 180MW capacity; this represents 

approximately 20% of the thermal fleet. This posited strategy—a proxy for protection against 

flooding—costs $100M total, $9.1M apiece for each of the 11 affected generators in the system. 

In Option B, engineers propose to bury high-capacity lines, specifically those with thermal limits 
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exceeding 250MW; this represents approximately 5% of the lines in the system. This posted 

strategy—a proxy for protection against high winds and tree faults—also costs $100M, $4M 

apiece for each of the 25 affected lines. 

Re-running the baseline analysis with the additional system protections in place, we obtain the 

following: 

 
Figure 24.  Resilience metrics showing improvements over baseline by adding flood walls (left) and 

burying electrical cables (right). 

Note that both investment options reduce consequences, relative to the baseline mean of 

$990.3M. However, Option A yields a more significant reduction, and further admits fewer high-

consequence events. Overall, the intent of this example is to illustrate the use of the proposed 

resilience framework and metrics to rigorously assess the relative benefits of proposed 

investment options—a critical step in (for example) rate case justification. 

C.7 Advanced Planning 
An alternative to evaluating competing investment portfolios is to simply determine the optimal 

investment portfolio directly, i.e., the portfolio that maximizes the increase in resilience (decrease 

in consequence) subject to a fixed budget constraint. In the case of this electricity use case 

example, this capability is enabled by the availability of the operations model as an algebraic 

mathematical optimization model. To illustrate this type of analysis, we expand the investment 

analysis scenario as follows. First, we assume a total budget of $100M, and respective hardening 

costs as previously specified—$9.1M per generator, and $4M per line. However, we introduce 

decision variables into the operational model that allow the optimization to determine which 

assets are hardened, and in what mix, while requiring that expenditures do not exceed $100M. 

The resulting histogram of economic impacts incurred is as follows: 
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Figure 25.  Resilience metrics showing improvements over baseline by combining the addition of flood 

walls with buried electrical cables. The optimization algorithm selected the mix of each, constrained to 

$100M total. 

In this analysis, we minimized the mean (expected) economic loss incurred across 100 sampled 

scenarios of realized damage for the posited hurricane event. The graphic indicates that the 

resulting investment portfolio (which includes a mix of generator flood walls and line burying) 

outperforms both Option A and Option B, in terms of both reducing the mean impact and 

admitting fewer very high-consequence events, although the investment was equivalent. 

C.8 Summary 
In this appendix, we have illustrated the resilience framework and associated metrics in the 

context of the electricity grid. Using a standard test system, we illustrated how threat scenarios 

and consequences can be specified. Given this context, we demonstrated a range of resilience 

analysis for the test system, ranging from a simple yet critical baseline resilience computation to 

automated deterministic of investment portfolios to maximize improvement in system resilience. 
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APPENDIX D:  PETROLEUM USE CASE 
 

This use case demonstrates one way to use the resilience framework to identify potential options 

to increase resilience and measure the increase in resilience due to implementing these options. 

Specifically, we calculate the increase in resilience gained by re-engineering two major 

transmission pipelines to decrease down time after a large scenario earthquake in the New 

Madrid Seismic Zone. 

D.1 Scenario Description 
The New Madrid seismic zone (NMSZ), stretching along the Mississippi River Valley from 

southern Illinois to Memphis is the site of some of the largest historical earthquakes to strike the 

continental United States.
25

 The last of these very powerful earthquakes occurred in the winter of 

1811–12 when four major shocks occurred over a period of 48 days. This area was only sparsely 

populated at that time, so damage to buildings and other structures was limited. A repeat of that 

earthquake event today would not only cause a human catastrophe in the region directly 

damaged, but would also cause extensive damage to our nation’s critical infrastructures. The US 

Geological Survey estimates a 7%–10% chance of an 1811–12 magnitude earthquake occurring 

in any 50-year period.
26

 

 
Figure 26.  The region impacted by an 1895 earthquake. The red region indicates the extent of severe 

damage to structures. The yellow region indicates the area over which shaking due this earthquake was 

felt by observers. 

                                                 
25

 J. Gomberg and E. Schweig, “Earthquake Hazard in the Heart of the Homeland,” US Geological Survey Fact 

Sheet FS06-3125, 2007, (http://pubs.usgs.gov/fs/2006/3125/pdf/FS06-3125_508.pdf). See footnote 1. 
26

 Ibid. 

http://pubs.usgs.gov/fs/2006/3125/pdf/FS06-3125_508.pdf
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Figure 27.  There are four major transmission pipelines that could be severely damaged by a New Madrid 

earthquake. Two of these, the Capline and the Midvalley carry crude oil. The TEPPCO and Centennial 

carry refined products. The shaded regions represent the shaking intensity of the scenario earthquake 

used for this analysis. Yellow and red indicate shaking intensities of VIII and IX, respectively, on the 

Modified Mercalli Intensity Scale. 

D.2 Evaluating Resilience 
Three models, a repair model, a petroleum network model and a consequence model were used to 

evaluate the resilience of North American petroleum infrastructure to a New Madrid earthquake. 

Results of the repair model serve as input to the network model, and results of the network model 

in turn feed the consequence model. Prototypes of two of the models were developed for this 

demonstration of the framework. An existing network model of North American petroleum 

infrastructure, the Sandia National Transportation Fuels Model (NTFM) was used to simulate the 

system level response to the scenario disruption. Notably, other models could be substituted for 

any or all of the models we used to demonstrate the framework for the petroleum case. 

D.2.1 Repair Model 
This prototype model estimates the cost and time of repair of a single infrastructure component 

given assumptions about the extent of damage, the level of preparation, and the availability of 

resources. To accomplish these estimates, the model represents role of logistics factors that could 

alter schedule or costs. For example: 

 Delays in receiving materials and equipment 

 Labor constraints 

 Establishing field offices and communications 

 Housing and transportation 

 Level of material stockpiles and pre-planning 
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The Repair Model was developed using System Dynamics (SD) methodology. SD models are 

commonly used for analysis of supply chains and managing large projects. Models of this type 

are useful for these applications because they include the dependencies of one part of a project on 

another, constraints on the supply of materials or labor, time delays and the accumulation of 

costs. 

The Repair Model simulates four phases of the repair process: Assess, Obtain Materials, Repair, 

and Test & Certify. The desired target schedule was established by providing estimates on each 

phase’s duration and resource needs. Given sufficient resources, the model would indicate that 

the repair would be completed on schedule and budget. If however, there were unexpected delays 

or shortages of resources, the model would indicate a longer repair time and larger cost. 

One use of this model is to evaluate how investments in preparation or infrastructure hardening 

could result in decreased repair times and costs. By providing estimates of repair times to the 

network model, each proposed investment can be associated with a value of the consequence 

metric. 

For this demonstration, the Repair Model used nominal values and aggregated resource units. A 

resource unit represents labor, materials, and equipment needed to accomplish each phase. The 

resource usage set relatively among the four phases. In an actual use, experienced repair 

professionals would contribute estimates of the time and resources needed to complete the repair. 

Figure 28 and Figure 29 show examples of the two main outputs of the Repair Model, the 

calculated cost of repair versus time, and calculated functioning capacity of damaged component 

versus time. The repair time is the interval from the time of the damage until the time the 

functioning capacity returns to normal (indicated as 1 on the graph in Figure 29). 

 
Figure 28.  Repair Cost trend calculated with the Repair Model. 
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Figure 29.  Functional Infrastructure Capacity of damaged component calculated with the Repair Model. 

D.2.2 Network Model 
The petroleum network model estimates the availability of transportation fuel in the event any 

component of the national fuel supply chain is damaged or disrupted. The portion of the fuel 

supply infrastructure represented by the model spans from oil fields to fuel distribution terminals. 

Different components of this system (e.g., crude oil import terminals, refineries, transmission 

pipelines, and tank farms) can be disrupted, and these disruptions can cascade through the 

system. 

In order to evaluate system-level resilience, it is necessary that the model simulate all of the 

major system attributes or behaviors that increase resilience. Market-driven resilience attributes 

represented by the model algorithms include: 

 Re-routing shipments 

 Drawdown of inventory 

 Use of surge capacity 

 Increasing imports 

 Reducing consumption 

It is also necessary that the simulation results be constrained by connectivity of the system and 

capacity of individual system components: 

 Pipeline flow 

 Refinery throughput 

 Tank Farm storage 

 Import terminal throughput 

This model represents the transportation fuel system as a network consisting of tank farms, 

refineries and terminals (the nodes of the network), and the pipelines that connect the nodes (the 

links of the network) (Figure 30). Sources of crude oil to the network are nodes that represent 
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either collections of oil fields (called geologic basins) or water terminals at which imports of 

crude oil are received. The close correspondence of the elements of the actual and model 

networks allows analysts to simulate damages to the network, and the resulting fuel availability 

impacts, at a reasonably high level of spatial resolution. 

The model incorporates algorithms that seek to minimize fuel shortages while balancing mass 

and not exceeding capacities. There are some important model assumptions: 

 Includes transmission system (pipelines, water*), but not distribution (trucks) 

 For example, the model does not know that fuel can’t be delivered because roads are 

damaged 

 Market behavior is based on fuel availability 

 No hoarding behavior (by consumers or suppliers) 

 No price increases until inventories decline 

 Desired consumption of fuel is not decreased by damage to other infrastructures 

 
Figure 30.  The transportation fuel network model. 

An output of the model is the time history of fuel consumed from each distribution terminal. 

Figure 31 shows for example, simulated fuel consumption at selected terminals that were 

impacted by a simulation of a 30-day disruption of the four transmission pipelines. The aggregate 

decrease in fuel consumed due to the scenario disruption is a measure of how well the system 
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performs its primary function while under stress. It is therefore the performance indicator 

calculated by the network model. 

 
Figure 31.  Simulated fuel consumption at terminals during 30-day disruption. 

D.2.3 Consequence Model 
In this example, we use the added fuel cost to consumers as a consequence metric due to the 

scenario disruption. There are three main assumptions: 

 During a fuel shortage that is expected to be temporary (weeks), services, businesses and 

individuals will try to maintain normal output despite fuel shortages 

 Market behaviors will act to decrease fuel consumption by raising prices 

 Prices rise faster than consumption decreases such that the cost of fuel (price times 

consumption) increases due to the disruption 

The assumed relationship between fuel price and amount consumed is shown in Figure 32. In 

this figure, the horizontal axis is the fraction of normal consumption. That is, at the normal level 

of consumption the value on the horizontal axis is 1 and the price of fuel is $3.50 per gallon. 

When fuel consumption declines to 40% of normal, the price tops out at $10.00 per gallon. The 

relationship shown in Figure 32 was informed by price data from an actual 2004 Phoenix fuel 

disruption.
27

 

                                                 
27

 http://www.doney.net/aroundaz/gas_lines.htm. 

http://www.doney.net/aroundaz/gas_lines.htm
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Figure 32.  Assumed demand curve for fuel. 

Given the price versus consumption curve shown in Figure 32, and the amount of fuel consumed 

from each distribution terminal on each day (as provided as output from the network model), it is 

easy to calculate the daily cost of fuel. The difference in this cost and the cost that would have 

occurred during an undisturbed period is the added fuel cost. The added fuel cost is the resilience 

metric calculated by the consequence model 

D.3 Calculating the Consequence Metrics for the Scenario 

Earthquake 
The three models were used to calculate a resilience metric for the scenario earthquake. 

The first step is estimate a distribution of repair times for each of the four damaged pipelines. 

Such a distribution could be calculated by running the repair model multiple times, which each 

run using a set of plausible values for the model parameters. The multiple runs would represent 

the uncertainty in those parameters. For this example, we did not understand the distribution of 

those parameters well enough to provide a good example. Therefore we used an assumed 

distribution of repair times (Figure 33). This is a log-uniform distribution ranging from a repair 

time of one week to one year. This distribution is skewed toward shorter repair times because the 

horizontal axis is on a log scale. 

We sampled this distribution to get 30 repair times and used those repair times as input to the 

network model. The result of these 30 simulations is a histogram (Figure 34) of the simulated 

number of barrels of fuel not consumed due to the disruption. Figure 35 is therefore the 

performance indicator for this scenario. Note the horizontal axis of this histogram is also on a log 

scale, so the range of the intervals increases to the right. 

Applying the consequence model to each of the 30 network model simulations results in the 

consequence metric is the likelihood of additional fuel costs. This metric is shown as Figure 36. 
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Figure 33.  Probability distribution of repair times for each of for pipelines. 

 

 
Figure 34.  Histogram of 30 sampled repair times and resulting shortfall. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.5 1 1.5 2 2.5 3

P
ro

b
ab

ili
ty

 

Disruption Duration (log days) 

1 year 

0

1

2

3

4

5

6

7

0 to
0.1

0.1
to
0.3

0.3
to
0.9

0.9
to
2.7

2.7
to
8.1

8.1
to 24

24 to
73

73 to
220

220
to ---

Fr
e

q
u

e
n

cy
, n

=3
0

 

Total Shortfall (million barrels) 



 Conceptual Framework for Developing Resilience Metrics for US Electricity, Oil, and Gas Sectors 

SAND2014-18019 89 September, 2015 

 
Figure 35.  Histogram of 30 sampled repair times and resulting fuel cost increase. 
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Figure 36.  Resilience metric for this analysis, shown as a histogram. 

D.4 Evaluating Investment to Increase Resilience 
Two of four transmission pipelines are located in more favorable geologic conditions with 

respect to earthquake damage. Here we ask the question of how much the resilience of the 

petroleum infrastructure to the scenario earthquake could be increased by investing in re-

engineering the TEPPCO and Midvalley pipelines such that they would suffer a down time of 

only one week for this earthquake. To answer this question, we repeat the calculation of the 

consequence metric using this assumption. 

Figure 37 shows the re-calculated resilience. Comparing this result to Figure 36 shows that the 

investment has reduced the likelihood of the added fuel cost of exceeding $2.3 Billion from 1/3 

to 1/10. 

0

1

2

3

4

5

6

7

8

Fr
e

q
u

e
n

cy
, n

=3
0

 

Added Fuel Cost (Billion $) 

Current State 



 Conceptual Framework for Developing Resilience Metrics for US Electricity, Oil, and Gas Sectors 

SAND2014-18019 91 September, 2015 

 
Figure 37.  Improved resilience metric if two pipelines were relocated, shown as a histogram. 

D.5 Conclusions/Recommendations 
We suggest that a network model is the best way to estimate fuel shortages that result from 

disruptions to infrastructure components. In order for stakeholders to have confidence in such a 

model, it is necessary to reach agreement that: 

 The model formulation represents system behavior well enough to calculate useful resilience 

metrics. 

 The network definition (infrastructure capacities and connections) represents the actual state 

of the system well enough to calculate useful resilience metrics. 

 For the petroleum use case, we calculated a single consequence metric (additional fuel cost). 

Additional research is required to (1) identify other metrics could be used to represent the 

impact of fuel shortages and (2) methodologies for populating these metrics. 
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APPENDIX E:  NATURAL GAS USE CASE 
 

The natural gas use case presented in this section exemplifies how resilience metrics can be 

applied to the natural gas infrastructure. Here, we evaluate resilience by calculating the overall 

financial impact on the economy that natural gas delivery shortfalls would cause due to a natural 

disaster, a 7.8 magnitude earthquake at the San Andreas Fault near the Salton Sea. An 

engineering assessment for this type of earthquake was performed and results show that it would 

damage three important transportation corridors around the southern California area. Figure 38 

shows a map of the natural gas infrastructure around the San Andreas fault. The earthquake is 

assumed to take place sometime in December, correlating to high natural gas useage. 

 
Figure 38.  Map of the Southern California natural gas infrastructure in relationship to the San Andreas 

Fault. 

The resilience of the Southern California basin is quantified under uncertain transportation 

corridor repair times and when the available natural gas storage facility is operated in two distinct 

ways. First, baseline resilience is quantified when storage withdrawals are restricted to historical 

values. Second, the operating policy changes by not restricting gas withdrawals from the storage 

facility. Resilience changes are assessed by comparing the economic impact for these two 

scenarios. 
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A network model of the North American natural gas infrastructure, the Gas Pipeline Competition 

Model (GPCM), is employed to calculate gas flows under normal and disrupted conditions. 

GPCM includes all major pipeline systems and uses market clearing in order to determine 

pipeline flows. This basic economic principle is also known as “competitive, partial equilibrium 

model” in economics literature. Its flow algorithm allows the network to adapt to disruptions. For 

instance, as price increases due to shortage demand is reduced and production is stimulated. 

GPCM also includes storage models and rerouting capabilities. 

Network flows are calculated using GPCM for normal conditions, disrupted conditions with no 

storage withdrawal restrictions, and disrupted conditions with unrestricted storage withdrawals. 

These results for the Southern California area are summarized in Figure 39. Flow values 

correspond to millions of cubic feet of natural gas per day. 

 
Figure 39.  Southern California network flow results summary for normal conditions (black), disrupted 

conditions with storage withdrawal restrictions (red), and disrupted conditions with no storage withdrawal 

restrictions (blue). 

The storage facility corresponds to the privately owned Aliso Canyon Storage. As natural gas 

prices increase due to the shortage caused by the three damaged transportation corridors, owners 

of the natural gas stored in this facility may wish to restrict the rate of withdrawal for economic 

gain or for any other reasons. This situation is modeled in the first case where withdrawals are 
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assumed to occur at rates seen in December of previous years under normal conditions. Under 

these conditions, model results show a natural gas supply approximately 50% below normal to 

the L.A. basin. 

Many sources of uncertainty could be studied in this hypothetical natural-disaster scenario. One 

such source of uncertainty is the time that it would take for crews to repair the three natural gas 

transportation corridors. The repair time would be a function of the damage sustained by the 

pipelines such as number of breaks, access to damaged pipeline sections, availability of spare 

components, to mention a few. For illustration purposes, assume the uncertainty in repair times 

can be described using a normal distribution with a mean of 1 week and a standard deviation of 

0.5 weeks. Repair costs are considered negligible in this analysis. 

We proceed to calculate the shortage amount by subtracting the natural gas flow under normal 

conditions from the natural gas flow under disrupted conditions, which totals 1,481 MMcf/day. 

We assume this corresponds to the amount of additional natural gas needed in the L.A. basin that 

results in no economic impact when the earthquake occurs. 

Next, we assess the effects of natural gas shortages on the Southern California economy. Again, 

for illustration purposes, assume that historical natural gas prices for different end uses under 

normal conditions in December provide a good proxy for the economic impact caused by the 

shortage. Historical prices for December 2013 were obtained from the energy information 

administration (EIA) website and are shown in Table 5. 

Table 5. Natural Gas Prices by Sector for California in December 2013 

Sector Price ($/Mcf) 

Residential 10.02 

Commercial 8.27 

Industrial 7.14 

Transportation 4.41 

Electric Generation 5.14 

Additionally, information about monthly natural gas consumption per end use was obtained for 

the period between December 2013 and February 2014. We assume that usage per end sector of 

natural gas in California is maintained after the earthquake occurs. 

We use Monte-Carlo simulation to estimate the economic impact by taking 1,000 samples from 

the repair time probability distribution described above. For each sample, the economic impact is 

calculated by aggregating the shortage per end use for the period of time that transportation 

corridors remain damaged. Figure 40 shows the histogram of economic impact for the case 

described above. We refer to this result as “baseline resilience” for this use case. The expected 

economic impact is $325.1 million. 
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Figure 40.  Histogram of economic impact shows baseline resilience of natural gas use case with a 

expected value of $325.1M. 

The resilience metrics enable comparison between operating and planning strategies. In this 

natural gas use case we compare the baseline resilience when energy storage withdrawals are 

restricted with an alternative where storage withdrawals are unrestricted and only limited by the 

maximum flow rate of the storage facility physical components. Again, 1,000 samples from the 

repair time probability distribution are employed. Results are shown in Figure 41. The expected 

economic impact decreases to $163.1 million. 

 
Figure 41.  Histogram of economic impact with unrestricted natural gas withdrawals shows natural gas 

use case modified resilience 

Mean = $325.1M 

Mean = $163.1M 
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This example illustrates the use of resilience metrics to compare operating policies in the wake of 

a natural disaster that damages the natural gas infrastructure. Although much research is needed 

to refine several of the assumptions used in this analysis, we can conclude that operation of the 

Aliso Canyon storage facility has a major impact in the resilience to an earthquake in the San 

Andreas Fault. 

R&D is needed to produce a more realistic resilience assessment. For instance, the model 

employed here is calibrated for use under normal conditions; uncertainty models for repair times 

and other sources of uncertainty are not readily available; no general consensus exists on how to 

translate from natural gas fuel shortages to resilience metrics such as economic impact. 
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APPENDIX F:  METHODS TO NORMALIZE RESILIENCE METRICS 
 

Normalization is necessary in order to compare resilience values across cities or infrastructures. 

An example of such normalization would be to take lost commercial revenue and divide by the 

number of businesses affected (or total revenue, or capita, etc). The result, expected lost revenue 

per business could then be used to compare across electric infrastructure of different sizes and 

compositions. 

As we have demonstrated in the use cases, resilience metrics can help guide operations and 

investments in order to improve energy systems’ resilience. For instance, when comparing two 

different portfolios of infrastructure upgrades, resilience metrics permit a direct comparison of 

the resulting resilience levels and inform decision makers of which option results in greater 

resilience. However, resilience metrics should also permit comparison of an energy 

infrastructure’s current state, including a quantitative understanding of that state with respect to 

other infrastructure so that a qualitative judgment can be made. For instance, the local council of 

a small town in a Midwest state is interested in knowing the current resilience of the electric grid 

in its city. The local power company performs studies following the framework presented in this 

work and brings back an answer to the local council. The answer is a set of numbers. This set 

contains resilience in terms of several different consequences such as lost commercial revenue 

($), lives at risk and total recovery effort ($). These numbers correspond to the expected values of 

the probability distribution found by the power company for each of the consequences listed. 

These numbers by themselves do not offer a basis for a qualitative judgment (i.e., very resilient, 

not resilient) unless they can be compared with the electric infrastructure resilience from other 

towns or cities. Differences between infrastructure, population, load composition, etc. will 

inevitably result in different resilience values. 
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APPENDIX G:  COMBINING/CONSOLIDATING RESILIENCE METRICS 

FOR A SYSTEM 
 

As defined by our resilience framework, the “value” of a resilience metric is a distribution of 

consequences (which can include restoration and recovery costs)—defined relative to a set of 

predefined disruption scenarios. In practice, it is very difficult to communicate and 

compare/contrast distributions to decision makers. Instead, summary statistics are used to 

transform the distribution into a scalar quantity, which can be easily interpreted. The most 

commonly used example of such a summary statistic is the mean of the distribution. However, 

alternative summary statistics may focus more on tail-oriented features of a distribution. An 

example of a range of summary statistics is given as follows: 

 
Figure 42.  Waiting on caption. 

In planning contexts, tail-oriented summary statistics are often preferred, to protect against 

“hundred-year flood” high-consequence, low-probability events. At a minimum, they are often 

combined in a linearly weighted manner with the expectation statistic. In the graphic above, the 

VaR and TCE statistics are defined in terms of a tail quantile of the distribution, e.g., 5%. VaR is 

then the cost of the 95% most costly disruption events. In contrast, TCE is simply the mean over 

the 5% most costly disruption events. 

Understanding and communicating the relationship between different summary statistics is a 

major research challenge, involving both technical and social dimensions. For example, while 

different tail-oriented statistics are often correlated, the degree of correlation is problem-specific. 

Further, understanding the exact nature of the correlation often yields insights into the problem at 
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hand. Fundamentally, the problem resolves to one of multi-dimensional data analysis and 

visualization, which is an active research area. 

Beyond collapsing consequence distributions to summary statistics, we must address the issue of 

analyzing distinct types of consequences simultaneously: for example, economic losses versus 

recovery costs. Given the disparate stakeholder preferences that are inherent in any 

comprehensive resilience analysis, some form of multi-objective performance analysis will 

ultimately be required. The most basic form of multi-objective analysis involves assigning 

weights to individual metrics (already transformed by a summary statistic), and computing the 

corresponding weighted sum. However, because this technique induces significant complications 

for interpretation of the resulting scalar quantities by decision makers, more general multi-

objective analyses are preferred. These include, for example, generation and presentation of a 

“Pareto front”, which shows the relationship between disparate metrics in the form of a multi-

dimensional scatter-plot. For two and three dimensions, analysis of the trade-offs between 

different objectives is straightforward. However, interpretation of higher-dimensional trade-offs 

requires dimension reduction, which in turn complicates presentation and understanding of the 

metric relationships. Similar to the research challenges underlying summary statistic correlation 

analysis, this problem is fundamentally one of multi-dimensional data analysis and visualization. 
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