Evaluation of In-Situ Tritium Transport Parameters for Type 316 Stainless Steel during Irradiation

D.J. Senor, W.G. Luscher K.K. Clayton, G.R. Longhurst

Tritium Focus Group Meeting Savannah River National Laboratory Aiken, SC 23 April 2014

Proudly Operated by Battelle Since 1965

PNNL-SA-102143

Motivation and Scope

TMIST-2 Experiment

- Measured in-reactor steady state tritium permeation through Type 316 stainless steel as a function of tritium partial pressure and temperature
- Tritium permeation irradiation enhancement of ~3X was observed relative to ex-reactor data and accepted literature values
- Transient Analysis of TMIST-2 Data
 - Sought to elucidate insight into the mechanism for the observed permeation enhancement
 - Three independent, but related, methods were used to analyze the TMIST-2 transient data

ATR Core Cross Section

TMIST-2 Experiment in ATR at Position B-2

TMIST-2 Lead-Out in ATR Core

- Irradiated for five cycles (257.5 EFPD at 18 MW_t) to a dose of 1.63 dpa-304SS
- Test conditions included tritium partial pressures of 0.1, 5, and 50 Pa; temperatures of 292 and 330° C
- Experiment designed by PNNL, capsules fabricated at PNNL, test train fabricated at INL
 Pacific Northwest
 Pacific Northwest

- Four independent active temperature-controlled capsules separated by bulkheads welded to outer pressure tube
- One test specimen per capsule with active permeating length of 10 cm
- Two thermocouples per capsule
 - Two junctions on centerline
 - Two junctions outside temperature control gas gap
- Gas lines and thermocouples brazed at bulkheads to separate capsule gas volumes
- Test specimens welded to bulkheads with areas outside active length held at much lower temperature and coated with AI to minimize extraneous permeation

- Copper sweep gas outlet lines used to minimize tritium loss between capsule and ion chambers/bubblers
- Tritium partial pressure and specimen temperature changed independently in stepwise fashion during irradiation
- All combinations of temperature and pressure tested at least twice at difference fluence

NATIONAL LABORATORY

Ion chambers used to establish steady-state (typically 6-8 days)

Steady-state permeation rate quantified by repeated liquid scintillation counts of tritium captured in bubblers

In- vs. Ex-Reactor Permeation Behavior

- Ex-reactor permeation measurements
 - > 100 Pa → Diffusion-limited → $P^{0.5}$
 - < 100 Pa \rightarrow Surface-limited \rightarrow P¹
- Experiment designed to measure in-reactor steady-state permeation rate and pressure dependence to elucidate key performance phenomena
 - Direct dissociative chemisorption
 - Associated with diffusion-limited permeation
 - Disrupted ex-reactor by:
 - Surface impurities at low pressure
 - Oxide films
 - Radiation-enhanced dissociation
 - Radiolysis of T₂ in gas phase
 - Physical or chemical changes in surface in-reactor

Results of In-Situ Permeation Measurements

- Weak temperature dependence over specified range
- P^{0.5} dependence observed
 - Suggests diffusion-limited permeation over specified pressure range

Pacific No NATIONAL LABORATORY

Results of In-Situ Permeation Measurements

- P^{0.5} dependence permits extrapolation of ex-reactor correlation
 - No transition from diffusion- to surface-limited behavior < 100 Pa</p>
 - Indicates in-reactor enhancement in permeability of ~3X

Permeability, Diffusivity, and Solubility

Permeating flux (J) is dependent on diffusivity (D) and solubility (S)

$$J = -D\frac{dc}{dx} = -D\frac{c_L - c_H}{L} = D\frac{c_H}{L}$$

Is the ~3X radiation enhancement in permeability (Φ) due to enhanced D, S, or both?

Pacific Northwest NATIONAL LABORATORY

Analytical Approach

- Attempt to extract diffusivity data by analyzing ion chamber transient data
 - Test steps exhibiting increase in flux only
 - Still evaluating methodologies for analyzing steps with decrease in flux
 - Assume slab geometry due to favorable aspect ratio per Kishimoto (1985)

Proudly Operated by Battelle Since 1965

Considerations and Assumptions

In-reactor specimens located >15 m from ion chambers

Transport time

- Quantified by time lag measured in ion chambers positioned at supplyside inlet and outlet (≤3 hr)
- Transport time considered negligible relative to time needed to reach steady-state (≥144 hr)
- Isotopic exchange
 - Possibly significant due to large surface area of tubing walls between test specimens and ion chambers
 - Tubing swamped with protium between test steps to minimize tritium cross-talk between permeation measurements

Surface processes

 Measured P^{0.5} dependence indicates that surface decomposition and recombination are fast relative to bulk diffusion

Pacific Nor NATIONAL LABORATORY

Analysis Methods

 $t = \frac{L^2}{6D}$

- Time-lag analyses (Frisch 1957)
 - Integrate flux transient to obtain plot of quantity vs. time
 - Fit linear (t→) portion of curve
 - Locate t-axis intercept and calculate D
 - Use measured permeability and estimated D to calculate S

Analysis Methods

- Rise-Time Analysis (Parker 1961)
 - Used for measuring thermal diffusivity via the flash method
 - Plot normalized flux (V) vs. ω
 - Solve for *D* using half-height (*V*=0.5) and intercept methods

Preliminary Results

- Exponential Analysis (Pasternak et al. 1970)
 - Plot normalized flux versus function of time
 - Obtain best-fit D to approximate experimental data

Pacific Northwest NATIONAL LABORATORY

Preliminary Interpretation of Results

- Initial estimates of D based on rise-time, time-lag, and permeating membrane model:
 - Reasonable agreement between methods (~3.5x10⁻⁹ cm²/s)
 - Lower (~100X) than accepted ex-reactor values (~1x10⁻⁷ cm²/s)
 - No physical reason to expect in-reactor reduction in D
 - Would require solubility enhancement >100X to account for enhanced, in-reactor permeability
 - Non-physical result suggests possible distortion in response curve due to isotopic exchange

Summary and Conclusions

- In-reactor permeability observed to be enhanced by ~3X relative to ex-reactor permeability
- P^{0.5} pressure dependence observed at low pressure (e.g. <100Pa) inreactor
 - Consistent with diffusion-limited permeation
- Preliminary analyses of transient ion chamber data reveals nonphysical results
 - Possible time-lag from isotopic exchange on tubing walls between test specimen and ion chamber
- Next steps
 - Some estimate of ion exchange time lag may be possible from comparison of ion chamber data on inlet and outlet sides (recent work by Longhurst)
 - Any correction for isotopic exchange time lag will be a large fraction of measured time constant, resulting in significant uncertainty

Pacific Nort NATIONAL LABORATORY