Managing Legacy Materials at WETF LA-UR-13-22476

Tritium Focus Group April, 2013

Roy Michelotti
WFO-WETF
LANL

The "T Buck" Stopped at WETF

- Experimental items and process equipment were generated at WETF, or sent to WETF from other LANL facilities and offsite locations, for testing or unloading, and tritium processing:
 - Bulk gas or hydride storage containers,
 - Used weapons-related components,
 - Unused weapons-related items beyond useful life,
 - Non-weapons-program items.
- Items accumulated due to lack of priority for testing, unloading, and processing.

Legacy Items in WETF

- There are an estimated 800 Legacy Items.
 - Most items (~600), are tracked as accountable or classified in an MC&A database.
 - Items not tracked (~200) are primarily sub-accountable and unclassified.
 - Some descriptions are incomplete.
 - There is no complete inventory of items not tracked through MC&A.
 - There are one-of-a-kind items, and "families" of, items.

HPNTAs

Legacy Items Beget Waste

- Determinations must be made regarding:
 - Programmatic utility,
 - Safety Basis compliance,

Quantity and value of

tritium,

Processing,

Potential RCRA characteristics.

Some Disassembly Required

UNCLASSIFIED

Multiple Challenges Managing WETF Wastes

- Disposal of Type A, < 1080 Ci, Low Level Waste (LLW) is relatively straightforward.
- Transportation of Type B, > 1080 Ci, LLW is a challenge due to shipping cask prohibitions of H₂>5% and powdered metal hydrides (Except for UC-609 or BTSP).
- Mixed LLW (MLLW) (Type A or B) is expensive and complicated to manage and dispose. Determination of RCRA hazardous characteristics and point-of-generation are subject to interpretation.
- DOE O 435.1, Radioactive Waste Management, impacts disposition of some waste streams.

RCRA Challenges: Hg

- WETF inventory is potentially Hg contaminated due to use of LP-50s that may have been contaminated by Sprengle/Toepler pumps at SRS.
- Hg traps will be installed before processing LP-50 gas, and gas in smaller containers, for loading onto HTVs.
- After processing, LP-50s and other containers potentially contaminated with Hg, become waste.
 - Are Hg contaminated containers MLLW?
 - Are Hg contaminated containers "RCRA empty containers?"

LP-50s

UNCLASSIFIED

RCRA Challenges: metal hydride

- Uranium hydride, or tritide, is AEA exempt because U is considered byproduct and hydrogen isotopes are tightly held and do not exhibit a hazardous characteristic.
 - Powdered U-hydrides or tritides are LLW.
- Palladium hydride, or tritide, is not AEA exempt.
 Hydrogen isotopes are tightly held and do not exhibit a hazardous characteristic; but Pd, if in powdered form, may be exhibit a RCRA reactive (D-003) characteristic.
 - Powdered Pd-hydrides or tritides may be MLLW.

RCRA Challenges: metal hydride (continued)

- Zirconium-alloy (getters) hydride, or tritide, are not AEA exempt. Hydrogen isotopes are tightly held and do not exhibit a hazardous characteristic.
 - Zr getter material is a DOT hazardous material, which does not equate to a RCRA hazardous characteristic.
 - Used, sealed, Zr getters may exhibit a RCRA reactive (D-003) characteristic.
 - Zr getters used with T, and left open to air, do not exhibit a RCRA reactive (D-003) characteristic and can be disposed as LLW.

Disposal Challenges: HTO

- WETF Tritium Waste Treatment System (TWTS) produces HTO on molecular sieve (MS) in AL-M1s.
 - Radiolysis generates H₂ pressure, measured up to 90 psia.
- H₂ produced by radiolysis is exempt from RCRA as AEA* byproduct material per §261.4 (a) (4).
- DOE O 435.1 prohibits containers greater than 1.5 atm (22 psia).
 - Addition of Pd-on-alumina catalyst inside AL-M1s (consistent with Tritium Waste Package patent 5,464,988, November 1995), or hydrogen getter (as used inside H1616 shipping package) are being considered to reduce radiolysis generated pressure.

*Atomic Energy Act

AL-M1s in WETF

UNCLASSIFIED

Type B Disposal at LANL Flanged Tritium Waste Container (FTWC)

FTWCs are ASME B&PV Code Stamped, 300 psig rated, with all-metal seals.

Offsite Type B Shipment of FTWCs

- 10-160B Cask has been evaluated.
- CoC requires modification to enable transport of H₂>5%, and powdered metal hydrides.

Major WETF Waste Streams

	DOT	Complications
Metal Hydrides and Contaminated metals	< 1080 Ci > 1080 Ci	Classified RCRA D-003 RCRA: Pb, Hg DOE O 435.1 > 1.5 atm Transportation if > 1080 Ci
HTO on Molecular Sieve	> 1080 Ci	RCRA D-001 DOE O 435.1 > 1.5 atm Transportation if > 1080 Ci

Backup **Tritium Waste Package w Pd Catalyst**

United States Patent 1191

TRITIUM WASTE PACKAGE

Rossmassler et al.

Patent Number:

Date of Patent:

[75]	Inventors:	Rich Rossmassler, Cranbury; Lloyd Ciebiera, Titusville; Francis J. Tulipano, Teaneck; Sylvester Vinson,	
		Ewing; R. Thomas Walters, Lawrenceville, all of N.J.	

Assignee: The United States of America as represented by the Department of

Energy, Washington, D.C.

[]	[21]	Appl.	No.:	347,134
----	------	-------	------	---------

Nov. 23, 1994 Filed:

U.S. Cl. 250/507.1: 250/506.1:

588/16 Field of Search 250/506.1, 507.1; 588/16

References Cited [56]

U.S. PATENT DOCUMENTS

4.950.426 8/1990 Markowitz et al. 250/507.1

FOREIGN PATENT DOCUMENTS

1148671	6/1983	Canada 588/16
61-18718	5/1986	Japan 250/506.1

5,464,988

Nov. 7, 1995

Primary Examiner-Jack I. Berman Attorney, Agent, or Firm-Mark P. Dvorscak; Robert J. Fisher: William R. Moser

ABSTRACT [57]

A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disnosable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

7 Claims, 1 Drawing Sheet

FIG. 1

