Methods for Post Irradiation Examination of Tritium Producing Burnable Absorber Rods

Clark Carlson Pacific Northwest National Laboratory

Tritium Technology Program

- US Government Requires a Tritium Stockpile
- US Department of Energy Ended Tritium Production at SRS in 1988
- Several options for Tritium Production were evaluated
 - Dedicated Reactors

2

- Accelerator Production
- Commercial Light Water Reactors
- Tritium Technology Program initiated in 1997 to produce tritium at TVA Watts Bar Nuclear Reactor using Tritium Producing Burnable Absorber Rods (TPBARs)
- In 2004, Watts Bar showed slightly elevated levels of Tritium in Cooling Water
- Post Irradiation Campaign Initiated in 2006
 - Currently Irradiating the 7th core with TPBARs

TPBAR Components

3

Why TPBAR PIE is Necessary

Permeation of Tritium into Reactor Cooling Water

- During initial irradiation of TPBARs in WBN1, higher than expected levels of tritium were detected in the reactor cooling water
- Information needed for Design Changes
- Fundamental Understanding of Transport in TPBARs
 - Transport phenomena during irradiation
 - Performance of components

Data Needs - Methods

Location of Tritium within the TPABR

- Protium/Tritium assay All Components
- Radial Gradient Analysis of tritium in Getters
- Low Level Tritium Analysis in Cladding
- Secondary Tracking of Tritium
 - ⁴He in Pellets by Tritium Assay Method
 - ³He in Cladding

Data Needs - Methods

General Transport of Species

- Visual Observations slitting and videography
- Carbon Analysis all components
 - Bulk Carbon Analysis
 - Auger Electron Spectroscopy/X-Ray Florescence Spectroscopy
 - Carbon analysis during Extraction/Protium Analysis

Other Analyses

- FTIR Spectroscopy Liner oxidation
- Microscopy Optical, SEM, TEM all components
- Miscellaneous Measurements all components

Protium/Tritium Assay

- High Temperature Furnace
- Pressure transducer to determine total gas evolved
- Samples collected for Mass Spec
- CuO bed to oxidize T_2 to T_2O
- Bubblers to collect T₂O
- Samples counted to determine Tritium

Tritium/⁴He Assay

Induction Furnace

- Samples collected for Gas Mass Spec
- CuO bed to oxidize all tritium to T₂O
- Liquid samples counted for tritium

Tritium Radial Gradient Analysis

- Dissolve Getter in HF/HNO₃ for specified time intervals
- Collect Off-gas in bubblers
- Analyze dissolution and bubbler solutions for Tritium
- Analyze dissolution solutions for Zirconium and Nickel by ICP-OES

Low Level Tritium Analysis

- Dissolve Sample in HNO₃ or HF/HNO₃
- CuO bed to oxidize all tritium to T₂O
- Use bubbler to collect T_2O
- Analyze bubbler solution for tritium

Helium system description

Measurements conducted by isotope dilution gas mass spectrometry.

- Analyzes radioactive or non-radioactive samples.
 - Activity levels up to R/hr at contact.
- Measures from $\sim 10^8$ to $\sim 10^{18}$ atoms (³He and/or ⁴He).
- 1% absolute accuracy above ~10¹⁰ atoms.
- Total He or He release with time or temperature.
- Sample sizes from micrograms to grams.

11

- Indirectly determine tritium by measurement of ³He decay product.
- Determine boron levels to wt. ppm by ⁴He increase from ¹⁰B(n,α) reaction.

Helium analysis system

Longitudinal Slitting Saw

- Section TPBAR into ~12 inch pieces
- Slit sections longitudinally
- Videograph Internal and external surfaces of each component
- Evaluate structural characteristics and unusual deposits

Bulk Carbon Analysis

- LECO Carbon AnalyzerPowderize pellet samples
- Metallic samples analyzed as received

Surface Chemistry

Auger Electron Spectroscopy

- Metallic surfaces
- X-ray Photoelectron Spectroscopy
 - pellets
- Secondary Ion Mass Spectrometry
 - All components

Film Thickness: Optical interference pattern observed in the FTIR data

$$d = \frac{(m_2 - m_1)}{2\eta(v_2 - v_1)}$$

FTIR Analysis

- Measurement performed using Nicolet FTIR spectrometer with reflectance stage
- Measured directly on Zr oxide sample
- Bragg law analysis of interference pattern yields film thickness, nλ = 2d sin(θ)

Optical Microscopy

- Nikon Eclipse Metallurgical microscope with XRF
- Oxide thickness measurements
- Structural information of pellets
- Tritide detection in liners and gettters
- Sample selection for further analyses

Scanning Electron Microscopy

- Quanta 250 FEG with EDS, WDS and EBSD detectors
- Compositional information
- Imaging of components
- Structural characteristics

Transition Electron Microscopy

 FEI Technai T30
Compositional information on pellets

Pacific Northwest

Miscellaneous Measurements

- Metrology dimensional information
- Mass change
- Component crush testing
- Pycnometry
- BET surface area

