Test Results For Physical Separation Of Tritium From Noble Gases And It's Implications For Sensitivity And Accuracy In Air And Stack Monitoring Robert Goldstein, Ivan Mitev, Dell Williamson #### WE FACE A CHALLENGE At many nuclear facilities, Air and Stack monitors are required to measure: Multiple radio-active materials Separately and simultaneously With great accuracy and high sensitivity #### **EVEN WHEN** High concentrations of one material are likely to mask the signals from the low concentration of other materials being measured. #### WE NOTE THAT Most ionizing radiation detector types exhibit significant cross talk when presented with multiple sources of ionizing radiation. ### Solution.... Overhoff Technology sees a need for a family of air and stack monitors to simultaneously measure ### **Tritium Organic C-14** Inorganic C-14 (14CO₂) **Noble Gases** ### Specifically - New Tritium—Carbon-14 - New Tritium—Carbon-14—Noble Gas Stack Monitor - Upgraded Tritium—Carbon-14 **Survey Meter** Air Sampler #### **NEW SURVEY METER** Good Results thru Physical Separation TriCair Tritium and C-14 SURVEY METER ### Good Results thru Physical Separation ### NEW FAMILY OF STACK MONITORS ### **Triathalon** Tritium, C-14, Noble Gas STACK MONITORS ### NEWLY UP-GRADED AIR SAMPLERS ### **TASC** Tritium, C-14 SAMPLER With Mass Flow Meter More efficient Re-Combiner ## Separation of Tritium Oxide from Noble Gases Via Nafion Membrane ### **TEST PROCEDURE** VALIDATION TEST OF A DISCRIMINATING TRITIUM MONITOR FOR MEASURING TRITIUM OXIDE IN THE PRESENCE OF NOBLE GASES ### • REV. 1 August 25, 2011 ## • APPLICABLE TO: MODELS 421-HTO AND 93-DR-T-HTO TEST CONDUCTED AT: OVERHOFF TECHNOLOGY CORPORATION 1160 US ROUTE 50, MILFORD, OHIO, USA ### Background #### Model 421-HTO The Model 421-HTO is designed to measure Tritium concentration in the oxide form (HTO). The collected sample is "processed" in order that only tritium (HTO) is measured from a sample which may contain noble gases. #### Model 421-HTO Uses A Dual Ionization Chamber Detector - Dual chambers share the same axis mounted to a common electrometer. - Model 421-HTO is designed for a low level detection limit of 0.005 MBq/m³ or 0.1µCi/m³ - Requiring large chambers with nominal volume of 8 liters each. - The "measurement" side chamber, has sample flowing through it and the other chamber the "compensation" chamber is sealed. - Both chambers are approximately equal in effective volume and respond to external gamma radiation equally. - The two chambers have bias voltages of opposite polarity, thus cancelling the effects from background gamma radiation. The technique of using a semi permeable membrane for the separation of tritium in oxide form (HTO) from noble gases in an air sample has been known for over 30 years. ### Test objective: What is the Nafion Tube Dryer Efficiency over the operating temperature range of 5°C to 40°C? ### Nafion Dryer Process - HTO is stripped out of the wet sample that flows through the dryer. - The purge gas is combined with the sample of HTO only and is measured in the detector of the monitor. \sim This protocol dictates the importance of knowing the efficiency for a given Nafion tube dryer within the operating conditions for this particular monitor. # Use of permeation (Nafion) tube dryer to REMOVE the Noble Gases from the Sample Flow Stream - The dryer consists of two concentric flow tubes - The outer tube is stainless steel - The inner tube is the permeation membrane - Sample gases flow in thru the center tube(s) - Clean dry PURGE air flows in opposite direction thru the outer tube - Any H₂O or T₂O moves thru the membrane into the purge flow - The Noble Gas goes straight to exhaust or to separate detector - The clean purge air carries only Tritium into the Ion Chamber. - Purge flow rate 2X main flow rate, results in a Tritium sample concentration 0.5 times the original sample - The corrected value is shown on the display # Set-up for Testing Efficiency of a Nafion Tube Dryer # Set-up for Calibrated Injection of Tritium into Test Apparatus ### Set-up for Test 2 pumps, the inlet RH sensors, the outlet dew point sensor with sampling cell at the right end of the PVC chamber ### Nafion Tube Dryer Test Results | Naf. t°[°C] | <i>In</i> RH [%] _{min} | In RH [%]max | Out RH [%]min | Out RH [%]max | Emin [%] | ε _{max} [%] | Condition | |-------------|---------------------------------|--------------|---------------|---------------|----------|----------------------|-----------| | 5 | 75 | 78 | 0 | 2 | 97.33 | 100.00 | COOLING | | 10 | 75.5 | 78.5 | 0.4 | 2.4 | 96.82 | 99.49 | COOLING | | 12 | 71.8 | 74.8 | 0.4 | 2.4 | 96.66 | 99.47 | COOLING | | 15 | 68.6 | 71.4 | 0.6 | 2.6 | 96.21 | 99.16 | COOLING | | 20 | 81 | 84.5 | 1.6 | 3.6 | 95.56 | 98.11 | COOLING | | 26 | 71.5 | 74.5 | 1.7 | 3.7 | 94.83 | 97.72 | AMBIENT | | 30 | 70.2 | 73 | 2.1 | 4.1 | 94.16 | 97.12 | WARMING | | 35 | 69.6 | 72.4 | 2.6 | 4.6 | 93.39 | 96.41 | WARMING | | 40 | 83 | 86 | 6.5 | 8.5 | 89.76 | 92.44 | WARMING | The input results are based on the accuracy of the temperature and humidity meter iTHX-SD. The output results are based on the accuracy of the temperature and humidity analyzer EdgeTech HTM. # Efficiency change with Temperature: 90% at 40° C to 99% at 5° C. ## Relative Humidity of Exit Gas vs Temperature: 1.5% at 5°C to 4.3% at 35°C Preparation of Clean Dry Purge Gas ### Results and Conclusions - RESULTS: This test provides data on how efficiency varies over the temperature range 5°C to 40°C. The test was conducted at Overhoff Technology Corporation during July 2011. - TEST CONCLUSIONS: The drying efficiency ranged from a minimum of 90% at 40° C to a maximum of 99% at 5° C. - BATTERY OF TESTS CONCLUSIONS: Detection Limit 0.005 MBq/m³ achieved even in presence of high Nobel Gas Levels Thank you for your attention, Your Questions, Comments and Discussion are very welcome Robert Goldstein, Ivan Mitev, Dell Williamson