Tritium Design Practices: Part 2

W. T. Shmayda University of Rochester Laboratory for Laser Energetics Tritium Focus Group Workshop Germantown, Maryland 23-25 April, 2013

Federal and state regulations govern the UR/LLE Radiation Safety Program

 Requirements come from the Nuclear Regulatory Commission (NRC), Environmental Protection Agency, and the Department of Transportation

- New York State has accepted regulatory authority from the NRC
 - NYS Department of Health (DOH) governs the use of radioactive material and radiation protection devices in NYS
 - Department of Environmental Conservation governs the release of radioactive material to the general public
- University of Rochester is licensed by the NYS DOH
 - UR's Radiation Safety Unit (RSU) administers the University's radiation safety program
 - UR's Radiation Safety Committee establishes the procedures for the RSU and oversees their operation
 - LLE operates under a permit issued by the RSU

NRC strives to prevent environmental pollution by radioactive materials and to minimize worker exposure

- Questions posed by the NRC are:
 - What can go wrong
 - How likely
 - What are the consequences
 - Which components will be involved

Designers respond to the regulatory bodies with a standard engineering approach

- Codes
- Risk assessment and management
- Failure modes and effects assessment
- Equipment selection and qualification
- Pre-operational safety inspections

Several codes apply to the construction of process equipment

ASME

- Section VIII Div 1 and B31.1 and/or B31.3
- BPVC Sect IX Welding and Brazing Qualification IEC 61508

- Relief values for water and non corrosive liquids up to 250 psig; 120-508120-OI-029
- Design for Earthquakes, and Seismic analysis
- Electrical Code, Fire Code
- Compressed gases and cryogenic fluid code
- Handling radioactive materials NFPA 91 Exhaust Systems for air conveying of vapors, gases

Vacuum practices and two documents provide general guidance for design of equipment for tritium service

- Helium Leak-tightness: ASME E498-95
- Ultrahigh vacuum practice

- DOE Handbook for Tritium Handling and Safe Storage (DOE-HDBK- 1129-2008)
- IAEA Tritium Safe Handling Manual: Technical Report Series # 324

Tritium emission reduction requires evaluation of four areas beyond constructing pressurized systems

- Eliminating potential routes for accidental releases
- Fine tuning operations: procedures
- Training and Qualification
- Assessing accidental releases during maintenance

Designed responses to tritium releases vary between facilities

- Automated responses to off-normal events
- Manual 'E' stops
- Inert gas glove box containment
 - Deliberate relief from process systems into the glove box
- Active' safety vs 'Passive' safety
 - return tritium to storage beds/bypass defective circuits
 - Rupture discs & expansion vessel
- Double containment: tritium containment/thermal management

Are the efforts to mitigate tritium releases increasing chronic emissions and tritiated waste streams and driving costs up?

Training and Qualification

Process loops to show valve alignments for various 'E' stops

UR

- Practice emergency response
- Living Procedures include emergency responses

Experience shows that releases increase during maintenance:

- less training
- less familiarity with the operations
- reduced engineering infrastructure

HTO emissions are minimized when both chronic and offnormal T₂ releases are reduced

UR

- Defense in depth
 - Search for common mode failures
 - Tertiary containment with independent T₂ capture technology for critical operations
 - Compartmentalization: low verses high activity
- Compactness
 - Process loops
 - Glove boxes reduces size of the clean up systems
- Secondary containment for select components
 - Permeation
- Avoid deliberate T₂ conversion to T₂O

A holistic approach to emission reduction is required