

Fuel Cycle Research and Development

Materials Recovery and Waste Form Development Campaign Overview

Jim Bresee, DOE NE

NEET Webinar September 17, 2014

Campaign Objectives

Nuclear Energy

- Develop advanced fuel cycle material recovery and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion to provide options for future fuel cycle policy decisions
- Campaign strategy is based on developing:
 - <u>Technologies</u> for economical deployment
 - Concept through engineering-scale demonstration
 - <u>Capabilities</u> for long-term science-based, engineering driven R&D, technology development and demonstration
 - <u>People</u> to provide the next generation of researchers, instructors, regulators and operators

Nuclear Energy

MRWFD Campaign Structure Aimed to Improve Once-Through and Enable Recycle

 Provide technical leadership in separations and waste forms, leading to effective options for future fuel cycles Manage Campaign research and development to include: prioritization, planning, reporting, and technical reviews Collaborate with university researchers, other campaigns, program offices, and international organizations 	
Reference Tech & Alternatives	 Provide a framework and data to evaluate technology improvements, performance targets, and identify gaps Develop and demonstrate material recovery technologies that enable processing a broad range of fuels with stringent separation requirements (focused on aqueous processing of LWR oxide fuel)
Minor Actinide Sigma Team	 Develop and demonstrate technologies that enable TRU separations from LWR fuel Develop cost effective separations processes for MA recycle
Off-Gas Sigma Team	 Develop and demonstrate technologies that enable fuel treatment under current regulatory environment Develop cost effective solutions to off-gas management from fuel treatment and other nuclear applications
Advanced WF & Processes	 Develop next generation, high performance, waste forms consistent with advanced separations technologies Demonstrate waste processes cost effective, reliable fabrication of next generation waste forms
Waste Form Characterization	 Enhance disposal options for existing and high-performance waste forms Develop fundamental understanding of waste form behavior in a variety of disposal environments Work with international partners to develop consensus degradation rate law(s)
Fund Science & Mod/Sim	 Develop advanced methods and fundamental understanding of separation chemistry and processes Develop predictive models based on fundamental data
Domestic Echem Process	 Develop and demonstrate deployable and sustainable technology to enable recycle of U/TRU for metal fast reactor fuel
Fuel Resources	 Develop and demonstrate extractants and engineered systems to further improve performance and lower cost supply of uranium from seawater

Nuclear Energy

- Advanced fuel cycles, if deployed, will likely be implemented in 2-3 decades
- There is a need for monitoring process operation in near real time
 - Currently, only tank volumes, temperatures, pressures, etc. are monitored, chemical analysis of the process is obtained, via sampling, which has a lag time of several hours from the time the sample is taken until the operators know the results of the analysis
- Chemical performance data (i.e. concentrations of key chemical species at any given time) would greatly improve operations and reduce the need for taking and analyzing samples
- Separation process operation would benefit from the near-realtime analysis of a number of chemical species

On-line Monitoring

Nuclear Energy

- The MRWFD campaign has been developing methods to monitor key chemical components of a separation process, in near real time
- Aqueous processing
 - Presented by Sam Bryan
- Electrochemical processing
 - Presented by Mark Williamson