

Nuclear Energy

Office Of Nuclear Energy

Annual Review Meeting

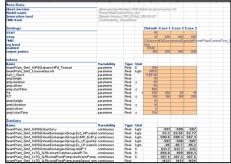
Dynamic Simulation Modeling Tool

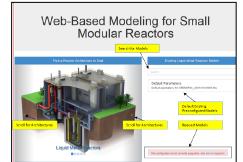
Lou Qualls ORNL

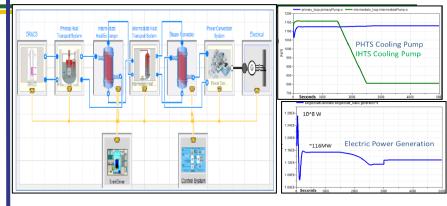
September 16-18, 2014

Work Package SR-14OR130108 – Modeling Tools for Dynamic Behavior Simulations of SMRs

Nuclear Energy Task Relevancy


ALMR Simulation




- Numerous dynamic models are needed to simulate plant behavior under operational scenarios and in response to transient conditions for advanced SMRs
- Modelica-based models with user friendly interfaces (Excel/ Web) allow common simulation environment and simplified/ easy access and use for wide range of technical investigators.

Technical Approach/Accomplishments/Results

- Modelica modeling architecture implemented
- ALMR PRISM (first) plant model completed
- Excel Based Simulation Tool Completed (see below)
- Web-based Simulation Application prototype developed & User Manual drafted (see below)
- Initial collaborators established with University Partners

ALMR PRISM Architecture

Excel Based Simulation Results

Expected Deliverable & Schedule

- FY14 molten salt cooled model deliverable due.
- FY15 web application deliverable due.
- FY15 model repository establishment due.
- FY15 working collaboration with University partners.

2

Project Overview

- To create a flexible, portable and powerful dynamic system modeling environment
- to facilitate investigation of control system strategies for reactor systems in any number of configurations
 - Facilitate rapid development of models,
 - Ensure consistency among research products,
 - Minimize duplication of effort

Technology Impact

Nuclear Energy

- The ORNL ModSim Tool is a <u>development</u>, <u>execution</u> environment and <u>repository</u> for reactor subsystem models and end-to-end reactor system models which allows
 - Powerful dynamic simulation in the Modelica environment
 - The ability to configure components into new power system arrangements
 - The ability to collaborate as a community via the internet
 - The ability to export models for analysis within the Excel environment opening affordable collaboration to everyone

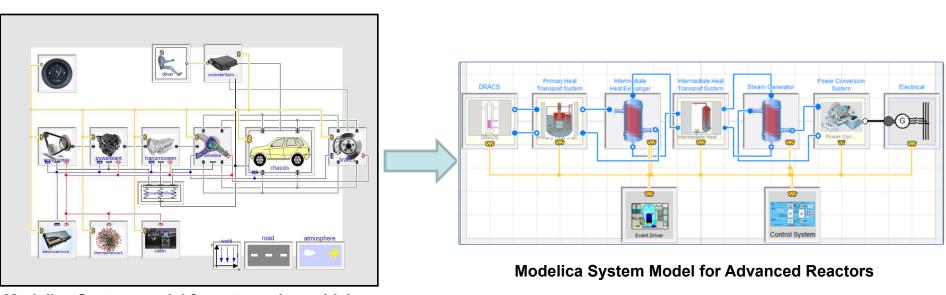
The tool will allow reactor design concepts to be studied

- Without requiring the modeler to develop a unique set of BOP models
- With multiple reactors coupled to shared infrastructure
- With control system implementations modeled separately so that system models do not require modification for different I&C designs

Modeling Tools for Dynamic Behavior Simulations of SMRs FY14 Achievements

Nuclear Energy

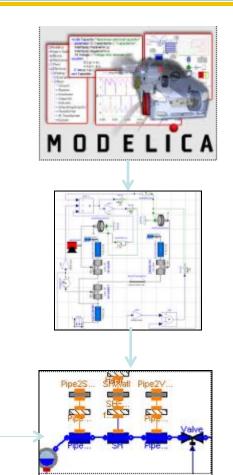
FY14 Achievements


- improved Flexible Model Architecture
- Updated all models to fit within Flexible Model Architecture
- User's Manual
- FHR reactor architecture
- Collaborative efforts initiated
 - Supervisory Control
 - Advanced PRA
 - Universities

FY14 Milestones

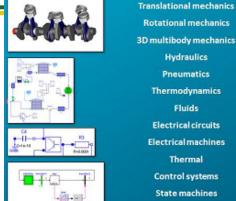
- M3SR-14OR1301086 Level 3 Milestone for Work Package SR-14OR130108, Aug 2014
 - "Extend Modeling Tool Architecture to Molten Salt Cooled Reactor"
- M2SR-14OR1301085 Level 2 Milestone for Work Package SR-14OR130108, March 2014
 - "Update on Small Modular Reactors Dynamic System Modeling Tool"

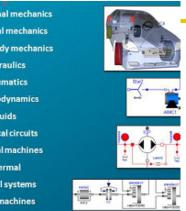
Approach Based on Proven Science

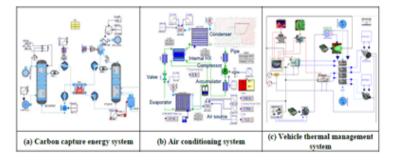


Modelica System model for automotive vehicle

How do we do this?

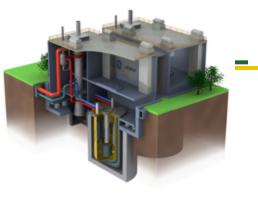

- We are modeling complex advanced reactors in the <u>MODELICA</u> language
- We are solving <u>MODELICA</u> models with <u>DYMOLA</u> solver
- We are leveraging the <u>MODELICA ThermoPower</u> library for reactor systems

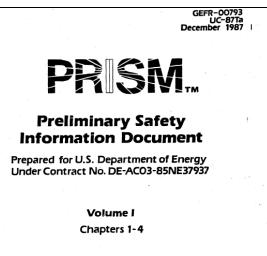




Modelica: Using the Emerging Open-Source Modeling Standard

- Modelica is a nonproprietary, object-oriented, equationbased language used to model complex physical systems.
- Modelica is free, open source, object oriented and has multi-domain libraries that already exist and can readily be modified
- Modelica is a multi-domain modeling language and can handle mechanical, electrical, electronic, fluid, thermal, hydraulic, pneumatic, magnetic, and control systems and their interactions
- Been adopted by other industries for fast turnaround design studies (automotive/aerospace)

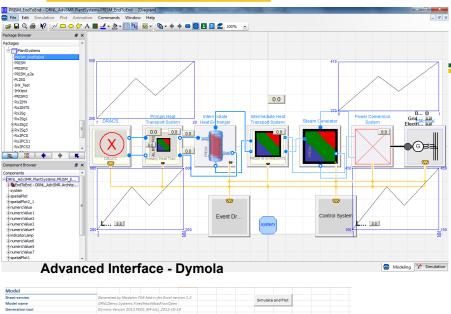



ALMR Concept Modeled

Nuclear Energy

- PRISM¹ ALMR End-to-End System model created from previous models that include:
 - Reactor
 - Primary System
 - Intermediate System
 - Power Conversion
 - Grid (Generic model)

¹The S-PRISM represents GEH's <u>Generation IV reactor</u> solution to closing the <u>nuclear fuel cycle</u> and is also part of its Advanced Recycling Center (ARC) proposition^[1] to U.S. Congress to deal with <u>nuclear waste</u>.^[2]It is a <u>sodium-cooled fast breeder reactor</u>, based on the <u>Experimental Breeder Reactor II</u>(EBR-II) design, scaled up by a factor of ten. *[Wikipedia*]

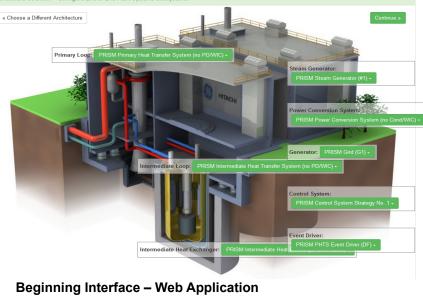

APPLIED TECHNOLOGY

ion by any holder of this d m Office", U.S. Departme Letter dated 5/20/93

Now that we know what the models look like, what was our test case?

User-Tailored Interfaces

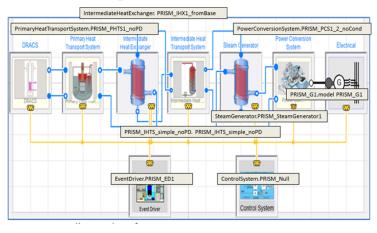
Model name	ORNLDemo.Systems.FixedHeatMassFlowOpen													
Generation tool	Dymola Ven	sion 2	013 FC	01 (64-bit)	2012-10-1	8								
FMU kind	CoSimulation_StandAlone			ne										
Number of processes	S													
Settings				Default	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10
Start time				0										
Stop time				1000										
FMU				C:\Users\	batteh\Ap	pData\Loc	al\Temp\Fl	MUD12C.tr	np.K1S8T1U	J3H6N7.fm	u			
Log level				Info										
Enable				TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
Output points				100										
Timeout				0										
Indata														
Name	Variability	Type	Unit											
reactor.rod.T	continuous			293.15		300								
reactor.Q reactor	parameter	Real	w	1500		1750								
reactor.C rod	parameter	Real	J/K	10										
coolant_loop.radiator.length	parameter	Real	m	10			1							
coolant_loop.radiator.diameter	parameter	Real	m	0.01										
coolant_loop.k_heat	parameter	Real	1	1000										
coolant_loop.valve_pos	parameter	Real		1										
coolant_loop.T_amb	parameter	Real	к	293.15										
coolant loop.cooling factor	parameter	Real		1										
controller.mflow_pump	parameter	Real	kg/s	0.01										
Outdata														
Name	Variability	Type	Unit											
reactor.node.Q flow	continuous	Real	w		-1499.94	-1749.93								
reactor.rod.T	continuous	Real	к		486.637	519.181								
coolant_loop.tank.level	continuous	Real	m		1.0038	1.00455								
coolant_loop.coolant_bus.T_rad_in	continuous	Real	к		336.643	344.188								
coolant loop.coolant bus.T rad out	continuous	Real	к		307.847	310.412								
coolant_loop.coolant_bus.mflow_pump_sensed	continuous	Real	kg/s		0.01	0.01								
coolant_loop.coolant_bus.mflow_pump	continuous	Real	kg/s		0.01	0.01								
controller.controlBus.coolant_bus.mflow_pump	continuous	Real	kg/s		0.01	0.01								

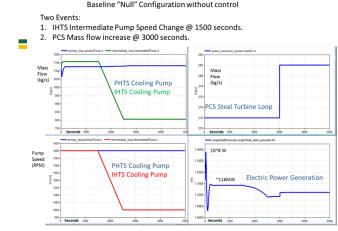

Intermediate Interface - FMIE

Web-Based Modeling for Small Modular Reactors

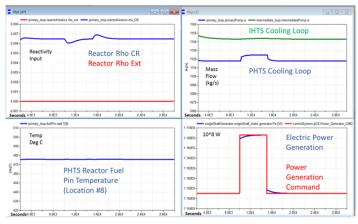
Default Parameters Default parameters for ORNL_0AdvSMR_PlantSystems_Rx2Grid2_Null.fmu

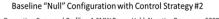
Default Parameters (Results) Default parameters for ORNL_0AdvSMR_PlantSystems_Rx2Grid2_CS1.fmu

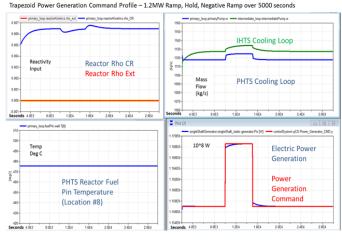

http://smr.apps.xogenv.com/#/


Goal is to lower threshold for simulation and modeling use

Flexible and Powerful Simulation


Baseline "Null" Configuration without control ORNL_AdvSMR.PlantSystems.Rx2Grid2





Baseline "Null" Configuration with Control Strategy #1

Trapezoid Power Generation Command Profile - 1.2MW Ramp, Hold, Negative Ramp over 5000 seconds

Two control strategies associated with a single transient

- Transient is simulated step change in reactivity
- #1 is controlling outlet temperature
- #2 is controlling differential temperature

FMI ADD-IN

FOR EXCEL

tstart

tstop FMU

enabled

Indata Name

PLk

PI.T

Name

Modifying and Executing Models Outside of Dymola

Nuclear Energy

steamPlant_Sim1_1.sTG_3LRh.totalFeedPump.pumpSpeed_rpm_continuous

FMI Excel Tool Allows sophisticated compiled models to be modified and executed through an Excel Interface, without a Dymola License

of physical models integrated in a Meta Data spread sheet environment. Sheet version Generated by Modelon FNII Add-In for Excel version 1.0 Model name PowerPlantControlTest_0v2 Dymola Version 2013 (32-bit), 2012-03-28 **Batch-simulations** Generation tool ٠ FMU kind CoSimulation StandAlone parameter sweeps ٠ Settings Default Case 1 Case 2 Case 3 -10 10 800 800 800 C:\Users\df2\Documents\Dymola\PowerPlantControlTest_0v2.fmu log level Info Model Configuration/Case TRUE output points 100 800 800 800 Settings Yariability Type Unit steamPlant_Sim1_1.hRSG.drums.HPd_Tmstart parameter Real ĸ 585.5 steamPlant_Sim1_1.sourceGas.w0 parameter Real kgłs 5.4E-06 Watt t Gas.k Real parameter ramp.height Real -10 parameter ramp.duration Real 50 s parameter ramp.offset Real 110 parameter 500 ramp.startTime Real parameter s 250 Beal 250parameter 25Adjustable Model Inputs Real 100 parameter \mathbf{S} Real 10 ramp1.height parameter ramp1.duration Real 10 parameter s amp1.offset Real 0 parameter ramp1.startTime parameter Real 700 s Outdata Yariability Type Unit steamPlant_Sim1_1.hRSG.GasOut.w continuous Real kgłs -591 -590 -587 steamPlant_Sim1_1.hRSG.HeatExchangersGroup.Ec2_HP.water[continuous] Real kgłs 63.2 63.64 63.77 steamPlant_Sim1_1.hRSG.HeatExchangersGroup.Ec1HP_EcIP.g continuous Real kgłs 590.6 590.3 587.3 steamPlant_Sim1_1.hRSG.HeatExchangersGroup.Ec_LP.gasOut_continuous Real kgłs -591 -590 -587 steamPlant_Sim1_1.hRSG.HeatExchangersGroup.Ec_LP.waterO(continuous Real kg/s -85 -85.7 -85.2 steamPlant_Sim1_1.hRSG.HeatExchangersGroup.mixIP.T continuous Real ĸ 631.7 631.7 632 **Resulting Model Outputs** steamPlant_Sim1_1.sTG_3LRh.steamTurbines.valvelP.Tin K 858.8 859 859.3 continuous Real steamPlant_Sim1_1.sTG_3LRh.totalFeedPump.feedWaterPump. continuous K Real 307.4 307.4 307.4

1431

1424

1422

Real

Functional Mockup Interface Add-

in for Microsoft Excel® enables steady-state and dynamic simulation

Sharing and Collaboration

Nuclear Energy

Web-based model development collaboration through Github with open and secure repositories for proprietary and non-proprietary work

ub E ,	A project to build a web-base	ed analysis tool for small, moo	dular nuclear reactors	
	72 commits	2 branches	0 releases	3 contributors
	branch: master 👻	ORNL-WebSMR /		
	Improved layout			
up	🔯 mtiller authored a month ago			latest commit cd329eb04a
ick (ed v	Documentation	incorporating Mike's edits and a fe	ew of my own	8 months ago
	Examples	minor changes to models		8 months ago
mor	Models	Sample generated HTML.		7 months ago
mtill fmus images schemas mtille util	fmus	Pre conference material		a month ago
	images	Forgot to add John's reactor imag	je	8 months ago
	schemas	Adding optional Title property		8 months ago
	util	Another syntactic change to archit	tectures.yaml	8 months ago
mor	.gitignore	Improved .gitignore		8 months ago
till	README.md	Demonstrating making changes		8 months ago
<u></u>	architectures.yaml	Improved layout		a month ago
fmus.yaml	fmus.yaml	More tweaking based on compiler	feedback	a month ago
	subsystems.yaml	More tweaking based on compiler	feedback	a month ago

	CitUub is a wab based
Code	<i>GitHub</i> is a web-based hosting service for
Issues	software development
Pull Requests	 projects that use the Git revision control system.
Wiki	
Pulse	
Graphs	
Network	
HTTPS clone URL	
https://github.com/x	
You can clone with HTTPS, S or Subversion.	ISH,

Clone in Desktop

Download ZIP

Conclusion

Nuclear Energy

- The ORNL ModSim Tool creates a set of common tools to investigate advanced reactor concepts and applications
- The tool saves time and money by giving researchers libraries of functioning models to begin with, modify and share

ModSim facilitates collaboration by

- Using an open-source and emerging simulation environment
- Having access via the internet
- Having the ability to create models that operate within the Excel environment

Modeling Tools for Dynamic Behavior Simulations of SMRs FY14 Achievements

Nuclear Energy

FY14 Achievements

- improved Flexible Model Architecture
- Updated all models to fit within Flexible Model Architecture
- User's Manual
- FHR reactor architecture
- Collaborative efforts initiated
 - Supervisory Control
 - Advanced PRA
 - Universities

FY14 Milestones

- M3SR-14OR1301086 Level 3 Milestone for Work Package SR-14OR130108, Aug 2014
 - "Extend Modeling Tool Architecture to Molten Salt Cooled Reactor"
- M2SR-14OR1301085 Level 2 Milestone for Work Package SR-14OR130108, March 2014
 - "Update on Small Modular Reactors Dynamic System Modeling Tool"