

Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting

Enhanced Risk Monitors with Integrated Equipment Condition Assessment

Pradeep Ramuhalli, Evelyn Hirt, Garill Coles, Christopher Bonebrake, William Ivans, Jamie Coble* Pacific Northwest National Laboratory * University of Tennessee

September 16-18, 2014

Nuclear Energy

Project Overview

Technical Details

- Objective
- Scope
- Technical Approach

Significant Accomplishments

Path Forward and Expected Outcomes

Work Package AT-15PN230105 – Enhanced Risk Monitors with Integrated Equipment Condition Assessment - PNNL

Nuclear Energy

Task Relevancy Enhanced risk monitors that incorporate real-time equipment condition information help control O&M costs and improve affordability of Advanced Reactors Characterize real-time risk of operating with degraded components – optimize operation planning and maintenance scheduling New risk metrics provide quantitative basis for trading off

- New risk metrics provide quantitative basis for trading off between different operational modes while maintaining safety margins
- Offset limited advanced reactor component reliability data by providing tools for assessing risk (safety, economics, regulatory compliance) when operating with new component designs

Technical Approach, Accomplishments/Results

- Enhanced risk monitors (ERM) methodology integrating equipment condition assessment (ECA), prognostic health management (PHM), and risk monitors
- Augment ERM to include uncertainty bounds and new risk metrics; validate using simulations and experimental data
- Accomplishments: Developed initial ERM methodology integrating ECA, PHM and risk monitors and evaluated impact of input uncertainty on predicted risk for a simplified Advanced SMR design
- Results indicate predicted risk metric (core damage frequency) varies with time and is affected by inspection frequency, inspection effectiveness, and maintenance effectiveness
 - Uncertainty bounds for predicted risk impact decisions on operations and maintenance scheduling

Expected Deliverable & Schedule

- Non-traditional risk metrics, including economic metrics and safety metrics – 9/30/2014
- Complete recommendations for integrating with O&M – FY2015 (April 2015)
- Complete prototypic ERM framework and evaluation (using available data sets) – FY2015 (September 2015)

Objective

- Predictive risk framework for advanced reactors that integrates real-time assessments of equipment condition, predicted probabilities of failure, and risk monitors
 - Enhanced risk monitor (ERM)
 - Equipment condition assessment – real-time component health
 - Prognostic health management predicted probabilities of failure
 - Probabilistic risk assessment risk monitors

Technology Impact

- Characterize real-time risk of operating with degraded components – optimize operation planning and maintenance scheduling
- New risk metrics provide quantitative basis for trading off between different operational modes while maintaining safety margins
- Offset limited advanced reactor component reliability data by providing tools for assessing risk (safety, economics, regulatory compliance) when operating with new component designs

PRA, Dynamic PRA, and Risk Monitors

Nuclear Energy

Risk: Measure of the probability of some undesirable consequence

• Core damage frequency, large early release frequency, health consequences to the public

PRA and Dynamic PRA

- Event tree, fault tree
- Simulation-based PRA
- Risk monitors extend PRA to reflect changing plant configuration
 - Equipment unavailability

Current risk monitors do not take the actual condition of SSCs when evaluating risk

- Population-based event and probabilities of failure (POF) are used
- Passive component failures are largely excluded from risk monitors (except as initiating events)

Enhanced Risk Monitors Use Predicted POF using Actual Component Condition and are Updated in Real-time

Case Study of ERM Applied to a Simplified AdvSMR Design

- Each reactor module is connected to a dedicated steam generator
 - Liquid metal reactor modules
- Two reactor module/steam generators are connected to a common balance of plant
- Focus of project on active component failures
 - Basic methodology may be extended to include passive component failures

Initial PRA Model Consisted of a Number of Cutsets that Lead to Core Damage

Nuclear Energy

Each cutset leads to core damage in one of the two reactor modules

- Probability of damage in both modules from a single initiation event is assumed to be small enough to ignore
- Cutsets are repeated for each module

Total core damage frequency (CDF) predicted over time

- Base case: Information at plant start-up, with are shown for time-dependent (linear) failure probabilities for each component
- Staggered periodic maintenance activities assumed to return equipment to like-new condition
- Condition assessment of SG louver at 4 and 8 years changes predicted risk

ERM Provides Mechanism for Dynamically Updating Total Risk and Computing Safety Margins

Nuclear Energy

Uncertainties in condition estimates impact predicted failure probabilities, and predicted risk

Impact to safety margin, O&M decision-making

Accomplishments

Nuclear Energy

Developed initial ERM methodology for predictive risk estimates

- Actual component condition used to predict component failure probabilities over given time horizon
- Methodology for incorporating predicted component failure probabilities into risk monitors – enables predictive risk calculations over given time horizon
- Uncertainty propagation in risk estimates
- Non-traditional risk metrics

Research to date documented in:

- Technical Report PNNL-22377 R0 (SMR/ICHMI/PNNL/TR-2013/02)
- Technical Report PNNL-22752 R0 (SMR/ICHMI/PNNL/TR-2013/05)
- Technical Report PNNL-23478 R0 (SMR/ICHMI/PNNL/TR-2014/01)

Accomplishments – Publications and Presentations

- Coble JB, GA Coles, RM Meyer, and P Ramuhalli, "Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors," In *Chemical Engineering Transactions*, vol. 33, pp. 913-918, 2013. doi:10.3303/CET1333153.
- Coble JB, GA Coles, RM Meyer, and P Ramuhalli, "Enhanced Risk Monitors With Integrated Online Equipment Condition Monitoring for Improved Risk Management," Presented at ANS Utility Working Conference, Hollywood, FL, August 13, 2013.
- JB Coble (Univ. of TN), GA Coles, RM Meyer, P Ramuhalli, "On Enhancing Risk Monitors for Advanced Small Modular Reactors," Presented at ANS Winter Meeting 2013, Washington DC, 2013.
- P Ramuhalli, GA Coles, EH Hirt, RM Mayer, JB Coble, R Wood, "Controlling O&M Costs of Advanced SMRs using Prognostics and Enhanced Risk Monitoring" *Nuclear Plant Journal*, Vol. 32 No.1, pp 42-44, Jan-Feb, 2014.
- Ramuhalli P, CA Bonebrake, WJ Ivans, Jr, EH Hirt, and GA Coles, "Enhanced Risk Monitoring -Potential Application to Surveillance Test Interval Extension," Presented at *Nuclear Energy Institute* (*NEI*) Working Group (WG) meeting on NRC Initiative 5b, Online WG meeting, on April 15, 2014.
- WJ Ivans, "Introduction to Predictive Risk Estimation: Methods and Applications," Tutorial Presented at *IEEE Int'l. Conf. on Prognostics Health Management 2014*, Cheney WA, June 2014.
- DW Wootan, P Ramuhalli, GA Coles, EH Hirt, MF Brass, "Fast Flux Test Facility Experience Relevant to AdvSMR Enhanced Risk Monitoring," Abstract accepted for ANS NPIC-HMIT 2015.
- CA Bonebrake, P Ramuhalli, WJ Ivans, GA Coles, EH Hirt, "Addressing Uncertainty in Predictive Estimates of Risk," Abstract accepted for ANS NPIC-HMIT 2015.
- CA Bonebrake, P. Ramuhalli, WJ Ivans, GA Coles, EH Hirt, "Evaluation of Enhanced Risk Monitors for use on Advanced Small Modular Reactors," To be Submitted to IEEE Transactions on Reliability.

Path Forward

Nuclear Energy

■ FY2014:

- Assessment of ERM framework incorporating online condition assessment for key components
- Uncertainty quantification for risk measures
- Investigation of alternative risk measures

■ FY2015:

- Complete prototypic ERM framework development and evaluation
 - Uncertainty quantification for measurement noise, model errors, unknown future load, POF distributions, etc.
 - Incorporate dynamic success criteria that may result from AdvSMR concepts of operation
 - Leverage developments in prognostics for passive components, and potentially include some passive components in full ERM analysis
- Define requirements for integrating with O&M tools

Conclusion

Nuclear Energy

- Research focused on addressing high-impact technical gaps to developing real-time predictive risk monitors for advanced reactors
 - Enhanced risk monitors for active components in advanced reactors (AR) designs by integrating real-time information about equipment condition and predicted failure rates.

Outcomes enable

- Real-time assessment of advanced reactor operational risk based on component degradation condition.
- Tools for quantifying changes in risk and trading off between different operational modes while maintaining overall safety margins

Outcomes support

• Improved reliability and economics for advanced reactors