Presentation to State Energy Advisory Board (STEAB) February 22, 2011

Building Controls and Lighting Systems

Francis Rubinstein

Lead, Lighting Group

Environmental Energy Technologies Division Lawrence Berkeley National Laboratory fmrubinstein@lbl.gov

U.S. Building End Use Energy Consumption

Building sector has: Largest Energy Use! Fastest growth rate! Buildings consume 40% of total U.S. energy • 71% of electricity • 54% of natural gas No Single End Use Dominates

Computers 1% Cooking 5% Electronics 5% Wash 5% Refrigeration 9% 21% Residential Cooling 10% Lights 12% Industry Water Heat 13% 33% Buildings Heating 32% 39% Other 4% Cooking 2% Computers 3% Transportation Refrigeration 4% 28% Office Equipment 7% 18% Commercial Ventilation 7% Water Heat 7% Cooling 13% Heating 16% Lights 28% Other 10%

Building Technologies Department

Lawrence Berkeley National Laboratory

October 2010

RDD&D Topics in Building Technologies Dept.

A. Building Systems

- Windows, Facades, and Daylighting
- Lighting Controls
- Low-energy cooling and controls
- Wireless sensor networks

B. Design, Delivery, and Operations

- Simulation Tools and Methods
- Building Information Modeling and interoperability
- Fault Detection and Diagnostics
- Optimized controls and commissioning
- Demand response/Smart Grid
- Benchmarking, rating, and labeling
- Energy information systems
- Health, Comfort Impacts

C. Deployment and Market Engagement

ົ້າກາງງາ

- Demonstration and technical assistance
- High-tech buildings
- Alternative financing and valuation
- Measurement & verification
- Training tools and curricula
- Stock modeling and forecasting
- Programs, policies, codes

Buildings "Grand Challenge"

• Focus on Life Cycle of the Building

- Design \rightarrow Construction \rightarrow Operations \rightarrow Decommissioning

Focus on Integrated Smart Building Systems

— Materials → Devices → Integrated Systems → Buildings

- Focus on "intersection" of Technology and Policy
 - Innovative, Disruptive technologies
 - Occupant behavior, life style, satisfaction, comfort
 - Investment and Decision making
- Focus on Measurable, Documented Energy Impacts
 - Make performance visible and understandable

LAWRENCE BERKELEY NATIONAL LABORATORY

Strategy for Achieving "Very Low Energy" Buildings....

- Deployment: (5-30% savings)
- Market Identify what works and deploy it widely
 - Applies to all buildings: new and existing
 - Mandatory programs: codes and standards
 - Voluntary programs: incentives
 - Demonstrate <u>Emerging Solutions</u> (20-60% savings)
 - Find underutilized, unproven technologies and systems
 - R&D to improve, optimize; make them mainstream
 - R&D --> Breakthrough Innovations (50-80% savings plus on-site renewable power)
 - New, more effective, high performance, integrated systems options
 - Technology, Systems, Process
 - Lower costs, lower risk

Forces

Exploring Intelligent Control Systems

Intelligent Lighting and Shade Control

New York Times HQ

Occupied 2007

- Dimmable lighting
 - Addressable
 - Affordable (1/3 original cost estimate)
 - Multifunctional
- Automated Shading
 - Cooling load control
 - Glare control

New York Times office with dimmable lights and automated shading

Lighting wastes energy because dimming lighting controls are not widely used

All Lighting Should be:

- Dimmable
- Addressable
- (Affordable)

Major Lighting Control Strategies

Vacancy Detection or Scheduling Automatic Dimming with Daylight Tuning Strategies Personal dimming controls

Institutional requirements

Lumen Maintenance

Demand Response

Lighting and Daylighting Control in Commercial Buildings

Problem Lighting energy is wasted when space is unoccupied and daylight is available – improved control needed

1980 – 2000 Electronic ballasts and analog lighting controls

2000 – 2010 Digital lighting controls

Projects

1981: World Trade Center 1982: VA Hospital 1991: Watergate Bldg 1996: Philip Burton Bldg

1979: PG&E Bldg

2002: Ron Dellums Bldg 2008: NY Times Bldg 2009: Philip Burton Bldg 2010 – future *Wireless*

2010: Seven GSA sites in CA & NV 2010: Ft. Irwin (US Army) 2012 - : User Facility Testbeds

1. Measure lighting energy consumption under different operating scenarios

- Power meters installed on selected circuits
- Detailed analysis of lighting control system data
- 2. Document lighting conditions under different conditions
 - Standard photometric surveys
 - High dynamic range (HDR) photometry
- 3. Evaluate user acceptance with occupant surveys erkeley National Laboratory -

Smart Controls Retrofit Options

GSA Retrofit - Conventional

- Continuous rows of fixtures
- 0.83W/ft² installed
- Switching at room level only
- Long operating hours (16 hours/day)
- No personal control

Workstation-Specific

- 3 lamps/fixture
- 1.23W/ft² installed
- 0.97W/ft² default
- 30 minute timeouts
- Indirect personal control
- Photocells not activated

The workstation-specific lighting system has an actual LPD far lower than the installed LPD $(1.23W/ft^2)$ and the baseline LPD $(0.83W/ft^2)$ throughout the day.

Scaling Up Installation of Workstation Lighting

	Technology Description			Q C316F
	OccuSwitch Wireless	Wired PNLCS	Hybrid ILDC	
System architecture	Room-based control	Distributed control bldg-wide connectivity	Room/area based control with building-wide connectivity	OccuSwitch Wirele
Supported Sensors	Light sensors and occupancy sensors	Ceiling mounted light and occupancy sensors	Sunlight intensity sensor, light/occupancy/temp sensors	
Scalability	Room by Room	Scalable from a single room to entire building	Scalable from a single room to wide area control	Occupancy + Photo Sensor
Best applications	Single offices; barracks; Retrofits; smaller budget	New construction, major renovation	Multi floor office buildings with daylight areas. Retrofit or new	Dimmer Switch
In-room Connectivity	Wireless based on ZigBee PRO standard	Wired	Wireless based on ZigBee PRO standard	
Cost advantage	+++ Installation ++ Commissioning	+ Installation +++ Commissioning	++ Installation ++ Commissioning	
Energy adv.	++	++	+++	PNLCS/Dynalite

Hybrid ILDC

Testing Advanced Lighting Controls at Ft. Irwin w/ Philips Lighting/ESTCP project 2007 Pilot

15 cubicles 1500 ft² measured

Lawrence Berkeley N Laboratory

Kit of Parts

Wired Wireless RF, IR, Light Powerline carrier

Dimmable Addressable Local and Central Control Multiple Strategies

> 2010 – 2012 CBP sites

Seven sites Over 2500 cubicles 250.000 ft² measured 2.5 Million ft² affected

2009 Full Test

86 cubicles 9000 ft² measured

DOE Commercial Building Partnership Program Overview

- CBP seeks to develop a set of energy-efficient, market-ready building solutions that will be widely deployable throughout the commercial building sector
- Pilots launched in 2008, ARRA funded projects in 2010
- 54 building projects currently underway between LBNL, PNNL and NREL
 - Projects include retail, commercial/office, higher education/institutional, high rise multi family, etc.
 - Complete list: http://www.energy.gov/news/9838.htm
- Aims to reduce energy use in the commercial building sector by demonstrating high performance design, construction, and operations options that can be widely deployed throughout the commercial building sector
 - Lab researchers work with outside Technical Expert Teams and M&V Technical Contractors to achieve project energy goals

CBP Project Types

- Retrofit an existing building to achieve 30% savings compared with its baseline/CBECS energy consumption
- New building that uses 50% less energy than an ASHRAE/IESNA Standard 90.1-2007
- Retrofit two or more building systems throughout the Participant's building portfolio to achieve significant energy savings portfolio wide
- Retrofit an existing building or group of buildings (e.g., an existing campus) to achieve a 50% energy savings relative to either the median energy performance of the company's building stock or CBECS
- Design, construct, and commission a new building or group of buildings that achieve(s) net zero energy use
- At LBNL: 11 Projects underway, 6 Retrofit, 5 New Construction

DOE CBP Outcomes and Deliverables

- Development of low energy 'toolkits', products that demonstrate the techniques used to achieve the aggressive energy savings, e.g.:
 - Calculators
 - Best practice guides
 - How-to handbooks
 - Methodologies used (e.g. Cx, M&V)
 - Business cases for EEMs used
 - Technical case studies for EEMs
 - Deployment and implementation plans for Partners
- Other deliverables
 - M&V data at EEM level pre- and post- retrofit, up to 18 months, M&V reports
 - Calibrated energy models
- Deployment through Partner portfolios, CBEA, other stakeholders (e.g. utilities involved in projects)

LBNL CBP Project Locations

NEW CONSTRUCTION

Long Beach Gas and Oil – Long Beach, CA Mesa Lane Partners – Isla Vista, CA NASA Ames – Mountain View, CA Oregon BEST – Portland, OR University of South Carolina – Columbia, SC

RETROFITS

GSA Pacific Rim, Region 9 – San Francisco, CA Massachusetts Institute of Technology – Cambridge, MA New York Times Building – New York, NY Twentieth Century Fox Studios LA – Los Angeles, CA University of California at Merced – Merced, CA University of Hawai'i at Manoa – Honolulu, HI

MIT, Boston, MA

- Building size: 36,000 sf data center and 463,000 sf Stata building
- Portfolio size: ~12 million sf
- Potential market impact: Universities across US
- Project type: retrofit of two buildings for significant portfolio savings; Data Center (HVAC and lighting) and Stata Center (Lighting and Server Room HVAC
- Utility partner: NSTAR
- Deliverables
 - Case studies expected in 2013
- Outcomes
 - Replicable lighting controls strategies for the campus
 - Qualitative lighting quality surveys
 - Replicable strategies for reducing energy consumption in data centers
 - May be ISO 50001/GSEP Pilot project

University of South Carolina, SC

Innovista Research Park

- Building size: 250,000 sf
- Portfolio size: ~11 million sf
- Potential market impact: Universities across US through American College and University President's Climate Commitment
- Project type: new construction, Net zero energy goal, minimum 50% energy savings relative to ASHRAE 90.1-2007
- Deliverables
 - Case studies expected in 2014
- Outcomes
 - Aggressive low energy building systems and strategies
 - Measure, compare and analyze occupant productivity in new building; compared to current building
 - Engaging and educating Partner and PDT on low-energy design

University of California, Merced, CA

- Building size: 237,000 sf
- Portfolio size: 780,000 sf
- Potential market impact: Universities throughout CSU, UC system, etc.

- Project type: retrofit multiple building systems for significant portfolio savings; Campus Central Heating plant and 2 System retrofits in Science and Engineering Building
- Deliverables
 - Case studies in 2013
 - Key performance metrics
- Outcomes
 - Improve and expand the Energy Performance Platform (EPP) and use this energy information system to track performance and identify areas of retrofit and energy saving opportunity
 - Determine key performance metrics for energy consumption

The LOOP, Santa Barbara, CA

- Building, portfolio size: 50,000 sf
- Potential market impact: University dormitories in CSU, UC systems, etc.
- Project type: new construction, min.
 50% below ASHRAE 90.1-2007
- Utility partner Southern California Edison, Emerging Technologies
- Deliverables
 - Case studies in 2014
 - Submetering case study
- Outcomes
 - Passive cooling and ventilation, phase change wallboard
 - Solar hot water heating and submetering strategies
 - Low-energy commercial kitchen HVAC strategies

GSA Region 9, CA & NV

- Building size: 100,000–500,000 sf
- Portfolio size: 350 million sf
- Potential market impact: Government buildings across US
- Project type: retrofit of 10 buildings for significant portfolio savings; Lighting and HVAC at zonal level
- Deliverables
 - Case studies in 2013
 - Lighting design analysis tool (CBEA collaboration)
- Outcomes
 - Occupancy based lighting controls strategies and benefits for workplace environment
 - Occupancy based HVAC controls strategies and benefits
 - Comparison of retrofit strategies
 across climate zones

Oregon BEST, Portland, OR

- Building size: 200,000 sf
- Portfolio size: 200,000 sf
- Potential market impact: Commercial offices, classrooms
- Project type: new construction, Living Building Challenge (Triple Net Zero), min. 50% below ASHRAE 90.1-2007
- Deliverables
 - Case studies in 2014
- Outcomes
 - Aggressive, but cost effective, net zero building strategies
 - Strategies for individualized monitoring plans
 - Methodology to motivate energysaving behavior
 - Strategies for meeting the Living Building requirements

Fox Studios, Los Angeles, CA

- Building size: 31,000 sf, 14,000 sf
- Portfolio size: 1.2 million sf
- Potential market impact: Large open spaces (e.g., warehouses) and other studio settings
- Project type: retrofit of 2 buildings and central plant for significant portfolio savings
- Deliverables
 - Case studies in 2013
- Outcomes
 - Chilled water plant energy reduction strategies
 - Replicable strategies for alternative HVAC systems on the campus

Long Beach Gas and Oil Building, Long Beach, CA

- Building size: 20,000 sf
- Portfolio size: ~1 million sf
- Potential market impact: Office buildings and small commercial spaces throughout the City of Long Beach
- Project type: new construction, 50% below ASHRAE 90.1-2007
- Deliverables
 - Case studies in 2013
- Outcomes
 - Replicable strategies for low-energy small offices in Long Beach
 - Strategies for daylighting in Long Beach
 - Strategies for low-energy modular construction

University of Hawaii at Manoa, HI

- Building size: 80,000 sf
- Portfolio size: 8 million sf
- Potential market impact: 8-campus UH system; natural ventilation strategy to serve as a model for other campuses
- Project type: retrofit; minimum 30% below current energy consumption, Net Zero Energy goal
- Deliverables
 - Case studies expected in 2013
- Outcomes
 - Advanced thermal comfort standards for Hawaii climate
 - Strategies for passive and natural ventilation in campus buildings
 - Strategies for reducing plug loads in campus buildings
 - Strategies for maintaining occupant comfort in a daylight and naturally ventilated space

NASA Ames, Moffett Field, CA

- Building size: 50,000 sf
- Portfolio size: 5 million sf
- Potential market impact: large commercial office buildings; advanced controls strategies and technologies could be employed in all office buildings
- Project type: commissioning of advanced building controls in a new building
- Deliverables
 - Case studies in 2012
- Outcomes
 - Methodology for creating a BIM model that can be used for continuous performance monitoring, O&M
 - Replicable strategies for advanced building controls, including FDD, in office buildings

New York Times HQ, NYC

- Building size: 1.6 million sf
- Portfolio size: 1.6 million sf
- Potential market impact: large commercial office buildings; Daylighting, shading, UFAD can be used in all office buildings
- Project type: measure performance of dynamic shading, lighting, and UFAD HVAC systems
- Related work by NYSERDA
- Deliverables
 - Post-occupancy evaluation under way now
 - Case studies in 2012
- Outcomes
 - Measured energy and demand savings will promote broader adoption in market
 - Quantified impact of shading on cooling loads and comfort
 - Documented occupant comfort as a result of daylighting and shading technologies

LBNL National User Testbed Facility

Design Underway for User Testbed Facility

- Multiple comparative experiments
- Experimental data sharing

6 to 8 Testbeds - Integration studies, exploring interactions in low-energy building solutions

- System or component level research
- Dynamic envelope control, lighting, daylighting
- Interactive effects of process loads
- Flexible room-side thermal systems, e.g. VAV, radiant, UFAD,...
- Integrated Systems Optimization
- Simulation tool validation
- Studies on comfort factors including glare, thermal distribution, operative temperature
- 2- story high bay space for lighting, skylights
- Sensors and Controls integration Lab
- Design/Visualization Lab

LBNL National User Testbed Facility

- Reconfigurable Test Modules
 - Structure
 - Façade/Glazing/Shading
 - Roof/Skylights
 - Interior space Ceiling, floor
 - HVAC
 - Lighting
- Developing Management and Operations
 plans
- Nucleus for National Network of Test facilities
 - Interface with public and private test sites (ORNL, NREL, Iowa Energy Center, utilities, etc.)
 - Link and share data sources

LBNL National User Testbed Facility

Design: 2011 Construction: 2012 Operations: 2013

BERKELEY