### Lowering On-Road Fuel Use: A Component Approach

Alan Meier Lawrence Berkeley National Laboratory akmeier@lbl.gov What is the Component Approach?

Addresses two aspects:

"Off-test" energy use

Energy impacts of aftermarket and replacement products

Some Aspects of a Car's Fuel Consumption are Not Captured in Tests

- Dynamometer tests and adjustments cannot simulate all aspects of on-road performance
- Actual consumption depends on
  - usage patterns
  - aftermarket conditions

Fuel Consumption Not Fully Captured in Fuel Economy Test



# Examples of Components Not Tested in New Vehicles

Sens

- Lights
- Air conditioner
- Alternator
- Some motors, pumps and fans
- Consumer electronics
- Tire pressure sensors and inflation devices
- Driver feedback







### Aftermarket and Replacement

#### Tires

- Tire pressure sensors and selfinflation devices
- Oils & Lubricants
- Luggage racks
- Spoilers & air dams
- Driver feedback devices







Logic

- If component is switched off during test, manufacturer has little incentive to make it efficient
- Consumers have no information about range of performance in aftermarket items

#### On-the-Road Electricity is Expensive!

- Electricity generated in a motor vehicle costs about \$1/kWh
- Compare to:
  - Residential electricity at 11 ¢/kWh
  - Photovoltaic electricity at 50 ¢/kWh
- ==> Aggressive electricity conservation measures may be costjustified

# Component Efficiency Improvements (1)

| System           | <b>Component Efficiency Improvements</b>                |  |
|------------------|---------------------------------------------------------|--|
| Lighting         | <ul> <li>High efficiency headlights, running</li> </ul> |  |
|                  | lights, etc.                                            |  |
| Air conditioning | High efficiency AC                                      |  |
| and climate      | <ul> <li>Insulated roof</li> </ul>                      |  |
| controls         | <ul> <li>Optically selectively windows</li> </ul>       |  |
|                  | <ul> <li>High albedo surfaces</li> </ul>                |  |
|                  | <ul> <li>Efficient fans</li> </ul>                      |  |
| Tires            | <ul> <li>Low rolling resistance tires</li> </ul>        |  |
|                  | <ul> <li>Precision pressure sensors</li> </ul>          |  |
|                  | <ul> <li>Self-inflation systems</li> </ul>              |  |

# Component Efficiency Improvements (2)

| System       | Component Efficiency Improvements                             |
|--------------|---------------------------------------------------------------|
| Controls and | <ul> <li>High efficiency alternator</li> </ul>                |
| electronics  | <ul> <li>Customized control chips for greater fuel</li> </ul> |
|              | economy                                                       |
|              | <ul> <li>Idle-off system</li> </ul>                           |
|              | <ul> <li>Low-standby consumer electronics</li> </ul>          |
| Driver       | <ul> <li>Real-time display of fuel consumption</li> </ul>     |
| feedback     | <ul> <li>GPS tied to traffic and optimum route</li> </ul>     |
|              | guidance                                                      |
|              | <ul> <li>Shift-up indicator (manual transmission)</li> </ul>  |
| Lubricants & | Synthetic oil                                                 |
| fluids       | <ul> <li>Higher performance transmission fluid</li> </ul>     |

# Component Efficiency Improvements (3)

| System        | Component Efficiency Improvements                           |  |
|---------------|-------------------------------------------------------------|--|
| Aerodynamics  | <ul> <li>Low-drag luggage, ski, bicycle racks</li> </ul>    |  |
|               | <ul> <li>Drag-reducing spoilers and after-market</li> </ul> |  |
|               | products                                                    |  |
|               | <ul> <li>Low-drag mirrors and other components</li> </ul>   |  |
| Pumps         | Efficient water pump                                        |  |
|               | <ul> <li>Efficient steering fluid pump</li> </ul>           |  |
| Photovoltaic  | <ul> <li>Ventilation while parked (reduces cool-</li> </ul> |  |
| (incorporated | down power)                                                 |  |
| into roof)    | Battery re-charge                                           |  |

# **Potential Savings**

| Component          | Fuel Savings* |
|--------------------|---------------|
| Tires              | 0 - 5%        |
| Lights             | 0 - 2%        |
| Driver<br>feedback | 0 - 20%       |
| AC System          | 0 - 5%        |

\* Savings depend strongly on technology and driving conditions



A familiar example of the strategy of endorsing components

# A Similar Approach for an Auto Component



Note: This is only an example to demonstrate the concept. Energy Star has no plans to create such a program.

Or perhaps for a package of components: "Energy Star Inside"



Auto Package This car contains at least 4 of the following components:

✓Efficient AC

- ✓ Heat-reflecting windows
- ✓Low-friction oil
- ✓ Efficient tires

✓Extra roof insulation

 ✓ GPS linked to traffic advisories

Note: This is only an example to demonstrate the concept. Energy Star has no plans to create such a program.

#### Other Aspects of Component Approach

- Can be used by policies, labels, incentives, and regulations
- Off-test fuel use often overlooked by present efficiency policies
- Benefits from international collaboration

#### **Research Aspects**

- Energy test procedures for components
- Feasibility of improving efficiency of specific components
- Transferring experience from buildings to vehicles
  - AC, building shell, PV, consumer electronics, thermal comfort, user interfaces, networks
- Understanding utility-building-vehicle energy linkages for hybrids

#### Summary

- Improving fuel economy still primary goal
- Some off-test aspects are not captured in the test (new and aftermarket) and may be easier to address separately
- Research needed to improve technologies and policies to commercialize them

### **Questions for Discussion**

- Is component approach <u>technically</u> feasible?
  - In new vehicles?
  - In aftermarket/replacement products?
- Is component approach <u>administratively</u> feasible?
  - In new vehicles?
  - In aftermarket?
- Is the package approach feasible?