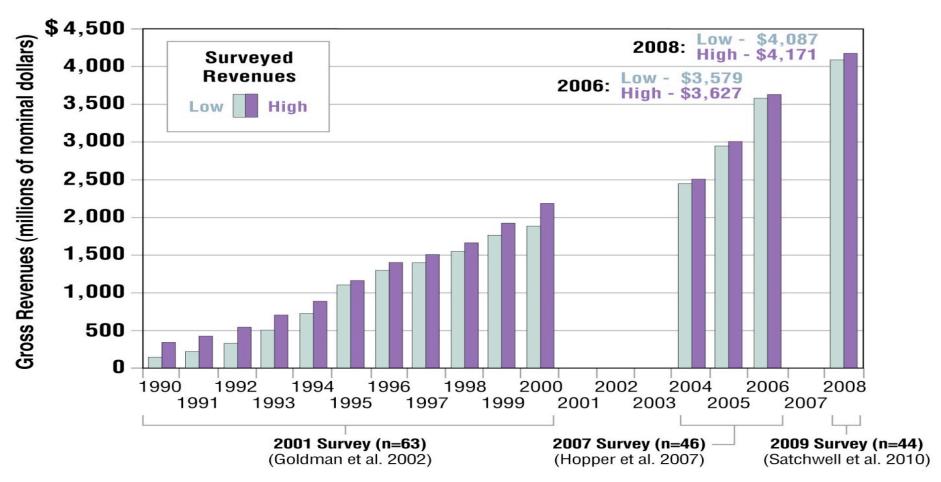
Benchmarking ESCO Projects in Public Sector Markets

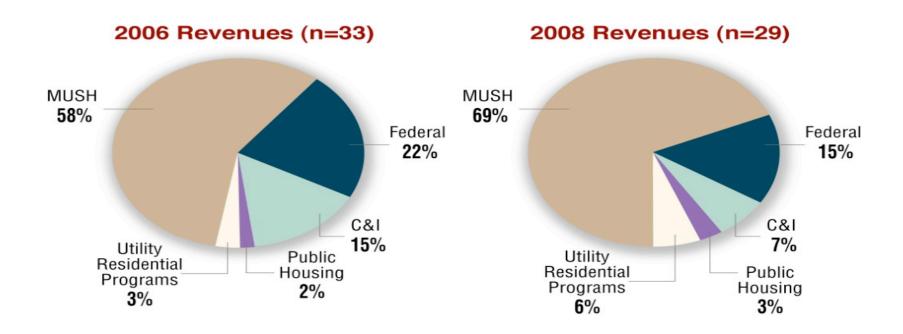
Chuck Goldman

CAGoldman@lbl.gov


Lawrence Berkeley National Laboratory

State Energy Advisory Board (STEAB) Visit February 22, 2011

Presentation Outline


- U.S. ESCO Industry and Market Trends
- ESCO Project Performance: New Results from LBNL/NAESCO Database
- Benchmarking Tools/information to assist State/ Local Governments

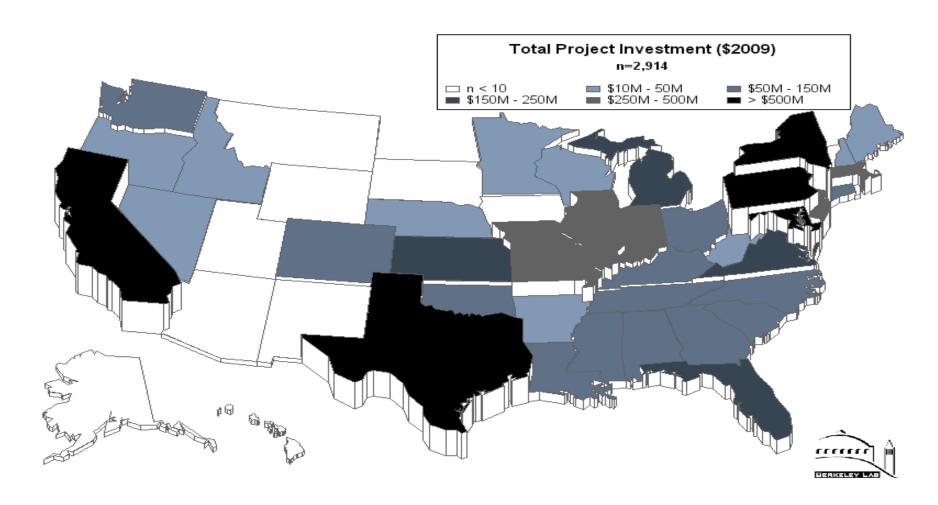
U.S. ESCO Industry: Estimated Market Size

• U.S. ESCO industry revenues were \$4.1B in 2008; 7% annual growth from 2006 to 2008 despite general economic slowdown

ESCO Activity by Market Segment

 In 2008, MUSH (i.e., municipal/state govt, universities/ colleges, K-12, hospitals) markets account for \$2.8B of ESCO revenues

LBNL/NAESCO Project Database


Project Objectives:

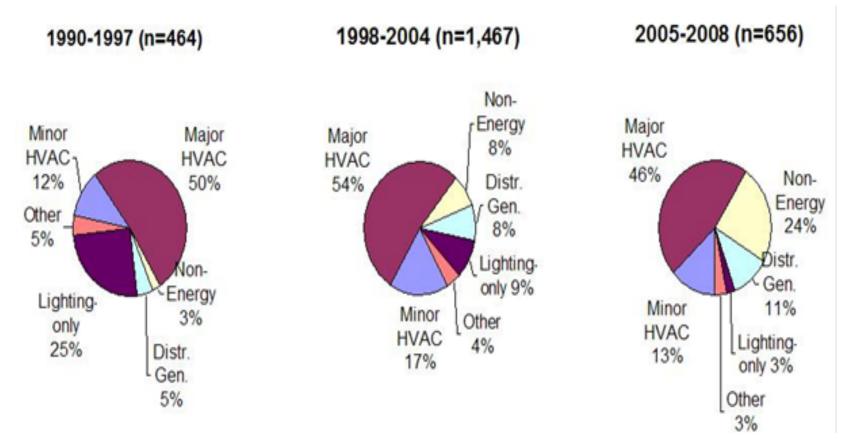
- Track industry performance and evolution over time
- Examine trends in savings, investment levels, market penetration of EE technologies, and customer preferences
- Database results can be used to support *BENCHMARKING* projects in institutional and public sector markets

Approach:

- NAESCO/LBNL partnership with voluntary participation from industry and government agencies
- ESCOs provide 75% of all project data (through NAESCO accreditation process)
- Information verified through peer review and reference checks
- Database size: ~3,300 ESCO projects in 49 states representing over \$8B in total investment (~20% of total ESCO industry activity)

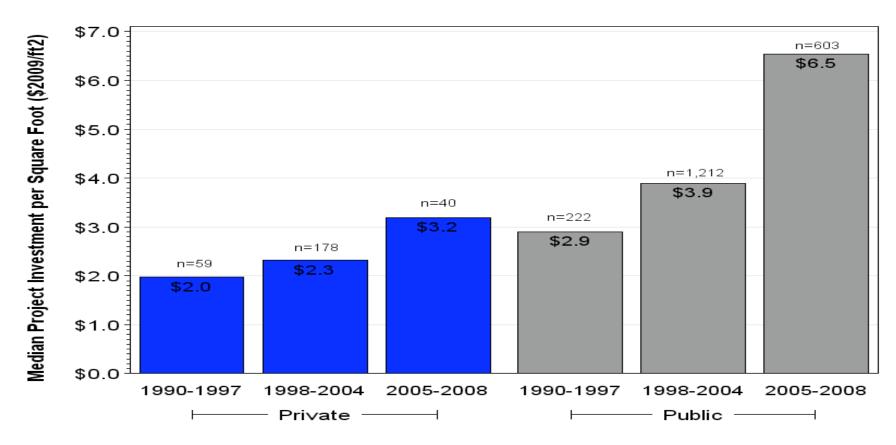
ESCO Project Investment Levels by State

ESCO project investments tend to be concentrated in heavily populated states that have supportive enabling policies

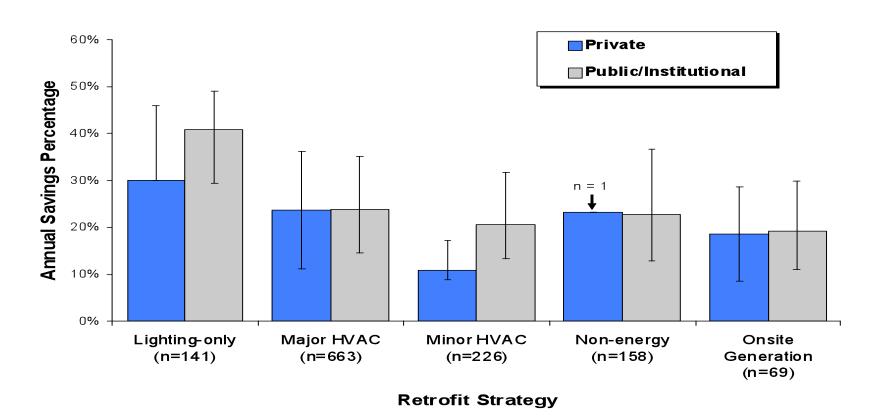

Market Penetration of Energy Efficiency Measures in ESCO Projects

Measure Category	Federal Government (n=448)		MUSH Markets (n=2218)		Private Sector (n=599)	
	No. of	% of	No. of	% of	No. of	% of
	projects	projects	projects	projects	projects	projects
**Lighting	319	71%	1766	80%	396	66%
Heating, Ventilation & Air Co	onditioning (H	VAC):	l	7		
**Boilers	87	19%	640	29%	85	14%
**Chillers	127	28%	460	21%	83	14%
Other HVAC sources	48	11%	286	13%	49	8%
**Distribution/ventilation						
equipment/systems	168	38%	916	41%	127	21%
**Controls	219	41%	1387	63%	148	25%
Other HVAC measures	77	17%	256	12%	25	4%
Packaged/roof-top/split	31	7%	286	13%	24	4%
systems	2.5	50/	101	00/		100/
Air quality	26	6%	181	8%	60	10%
**Building envelope	37	8%	492	22%	51	9%
(e.g., insulation, windows)	2.5	60/	1.5	10/		00/
Geothermal heat pumps	25	6%	15	1%	1	0%
Motors/drives:	1.65	1.50/	260	120/	26	1.00/
High-efficiency motors	65	15%	268	12%	36	6%
Variable speed drives (VSD)	77	17%	416	19%	78	13%
**Water heating measures	47	10%	228	10%	46	8%
Miscellaneous	2.4	50/	266	120/	10	20/
equipment/systems	24	5%	266	12%	12	2%
**High-ef f iciency	3	1%	12	1%	26	4%
ref rigeration						
**Industrial process	20	4%	13	1%	16	3%
improvements	20	470	13	1 70	10	370
**Behavioral & operational	66	15%	402	18%	73	12%
strategies						
Load management systems	8	2%	31	1%	5	1%
**Customer distribution	12	3%	34	2%	13	2%
system equipment						
*Non-energy improvements	13	3%	161	7%	8	1%
*Water conservation	111	25%	450	20%	93	16%
Distributed generation:	1		1			
Renewables	16	4%	18	1%	4	1%
Cogeneration	20	4%	74	3%	16	3%
Other DG technologies	15	3%	30	1%	7	1%
Backup/emergency	7	2%	27	1%	7	1%
generators	•	2,0	_ ·	1,,0	<u> </u>	1,,

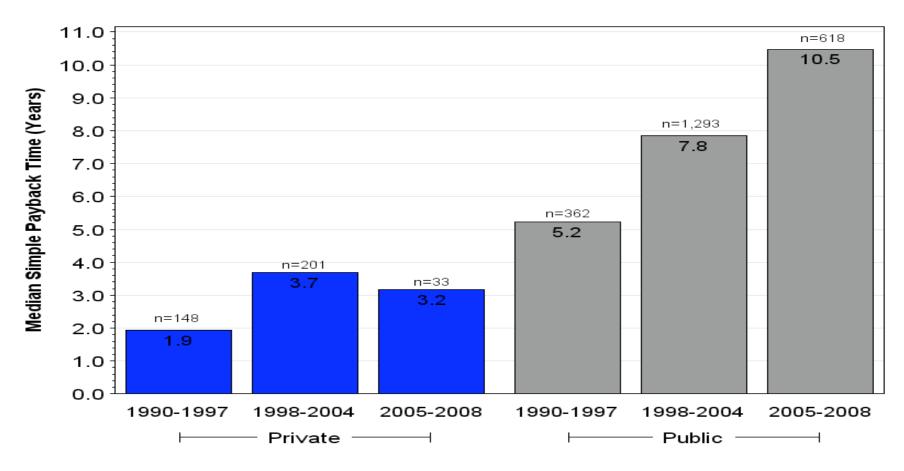
- LBNL database includes ~200 different EE measures, technologies, strategies that ESCOs report
- Example: 80% of all "MUSH" projects install lighting efficiency measures; 29% replace boilers



Primary ESCO Retrofit Strategies


- For reporting and analysis purposes, we group EE technologies into major retrofit strategies
- Share of lighting-only projects is declining over time (25 to 3%) while ESCO projects that include onsite generation is increasing (5 to 11%)

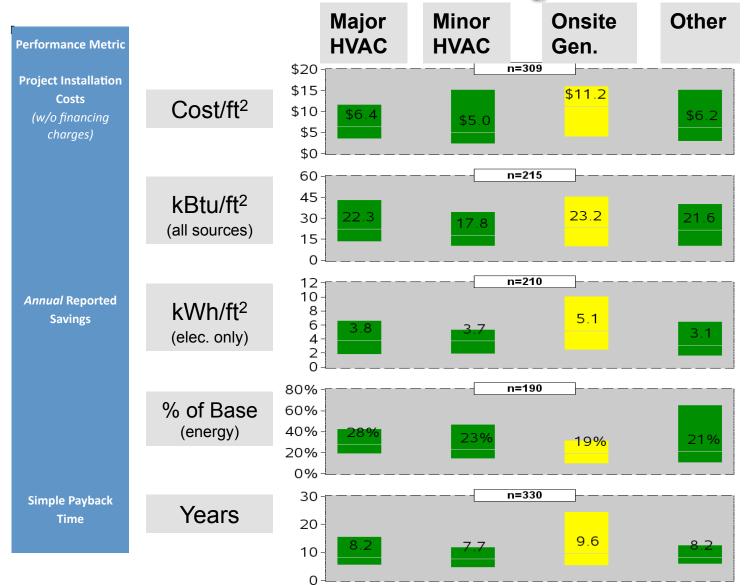
Trends in ESCO Project Investment


- Project investment levels (i.e., per-contract installation costs) are increasing over time, even after accounting for inflation
- Reasons: More comprehensive projects (measures per project), more onsite generation installations; & possibly, increases in labor and material costs (relative to inflation rate)

ESCO Project Savings by Retrofit Strategy

- Major HVAC projects typically save ~25% of baseline energy usage
- Lighting-only retrofits typically save ~30-40% of baseline energy usage, but these are becoming less common and are often "stipulated savings"

ESCO Project Economics for Customers



- More comprehensive projects and increasing installation costs result in longer median payback times for public sector projects
- ~3300 ESCO projects in our database achieved ~2.3 billion in direct net economic benefits to customers

Benchmarking Tool for ESCO Projects

- LBNL and NAESCO are developing fact sheets to help state/local govt. ARRA grantees benchmark and assess performance of proposed EE projects as part of DOE EERE WIP Technical Assistance efforts
- LBNL developed analytical tool—using ESCO database—to benchmark historic project performance using the following metrics:
 - 1. Typical Installation costs per square foot (w/o financing charges);
 - 2. Reported annual energy savings expressed in (a) kBtu/ft², (b) kWh/ft², and (c) % of baseline energy; and
 - 3. Simple payback time.
- LBNL will report benchmarking data by retrofit strategy (major HVAC, minor HVAC, onsite generation, and other) for each market segment (e.g. state/ local govt., K-12 schools)

Benchmarking Performance of ESCO Projects: State/Local Government Buildings

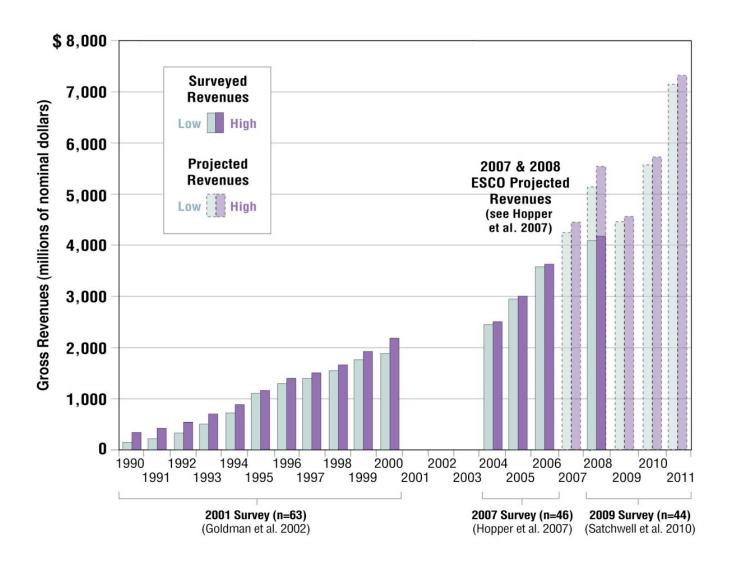
Summary

- ESCO industry revenues continue to increase despite general downturn in the broader economy; poised for additional growth
- ESCOs are installing a more comprehensive mix of technologies at project sites
- Public/institutional market sector continues to be the dominant market for U.S. ESCOs
- ESCO project investment levels increasing over time due to customer demand for more comprehensive projects, increase penetration of onsite generation
- ESCO projects are producing <u>net</u> economic benefits for customers (\$2.3B in net benefits for ~3300 projects in our database)
- LBNL/DOE/NAESCO are developing project benchmarking tools to help state/local government gauge the expected performance of ESCO projects

For More Information...

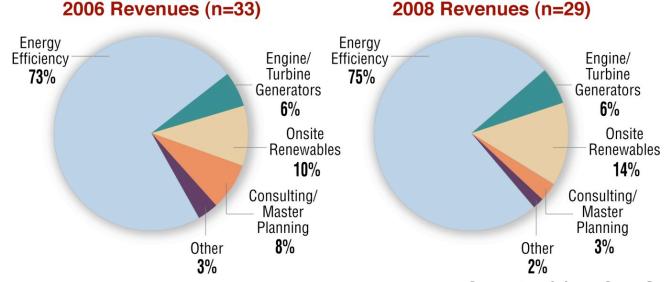
Download reports here:

http://eetd.lbl.gov/ea/emp/ee-pubs.html

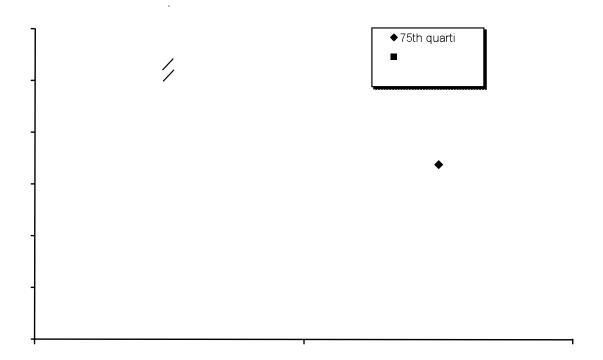

LBNL Contacts:

Charles Goldman, <u>CAGoldman@lbl.gov</u>, (510) 486-4637 Peter Larsen, <u>PHLarsen@lbl.gov</u>, (510) 486-5015 Andrew Satchwell, <u>Asatchwell@lbl.gov</u>, (510) 486-6544 • 1

Background Slides



Growth Projections for U.S. ESCO Industry


ESCO Market Activity: Industry Revenues by Project/Technology Type

- Onsite renewable generation accounts for 14% of ESCO industry revenues in 2008 (~\$570 million)
- Contributing factors to increased deployment are:
 - ESCOs leveraging publicly-funded incentives
 - bundling renewable energy with energy efficiency improvements to help customers meet various goals (e.g., energy independence, environmental footprint reductions)

ESCO Projects: Benefit/Cost Ratio

- Despite installation cost increases, ESCOs are still able to generate net economic benefits for their customers.
- We estimate that ESCO projects in our database generated about \$2.3 billion in direct net economic benefits to customers.

