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Safety concern: “in-vessel inventory source term” 

•  Challenges in neutron-irradiated plasma facing components (PFCs) 
–  Radiation damages (vacancy, vacancy-cluster, void etc.)  will be created by 14 

MeV throughout PFCs thickness, becoming trapping site for tritium 
–  Large amount of tritium can be trapped in vacancy-cluster as gas form, leading 

to bubble formation, and blister formation in metal  
–  Tritium behavior in the fusion nuclear environment is not fully understood 
 
è There exists large uncertainty in tritium retention assessment in neutron-
irradiated PFCs 
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FIGURE III.2.1-1 

Implantation of Tritium into Plasma-Facing Material 
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FIGURE III.2.1-2 
Mechanism of Tritium Co-Depositing with Carbon 

Reference: ITER GSSR 2004 

e.g. Safety Limit in ITER:  
1 kg in-vessel tritium inventory in 
~ 900 m2 PFC surface area 



Safety in material selection: 
•  Safety plays a major role in material selection: 

–  e.g. Carbon was excluded to use in the tritium phase of operations due to 
unacceptable levels of tritium retention in co-deposited carbon layers.  

•  Question: How about tritium in tungsten? 
–  Tungsten, a candidate PFC for the divertor in ITER, is expected to receive 

a neutron dose of 0.7 dpa by the end of operation in ITER, and >10 dpa in 
FNSF and DEMO. 

 

Ref: J. Roth et. al. PPCF 2008 
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I.  1983-early 1990’s:  Tritium Research Laboratory (TRL), SNL-Livermore  
•  Established as the Tritium Plasma eXperiment (TPX) and operated for 10 years 

•  RF driven plasma (390 MHz) up to 200 W; axially magnetized to ~ 150 G, plasma 
density ~3x1011 ions/cm3, Te ~ 10 eV, on-sample ion flux 10 mA/cm2 

•  Performance:  T throughput ~ 0.1g/day; experiment placed in a high-velocity 
ventilation hood for T contamination control; pumping system exhausted to TRL 
vacuum effluent recovery system, diagnostics included Langmuir probes, QMS 
(plasma species and permeation species), in-situ AES 

•  Decision was made to upgrade the TPX, and then close the TRL in 1992 

II.  early 1990’s-2002: Tritium Systems Test Assembly (TSTA) at LANL 
•  Rename as the Tritium Plasma Experiment (TPE), and upgraded to hot cathode 

reflex arc w/ LaB6 source, returned to tritium operation in 1995, and operated for 7 yrs 

•  Performance:  Increased maximum T throughput to ~ 0.5 g/hr; direct-feed of T from 
TSTA facility, or local T source from a U-Bed; T effluent captured on U-Beds, ion fluxes 
up to 1 A/cm2 and 100 - 200 eV energy, increased pumping speed to 2200 l/s, 
diagnostics included Langmuir probes, QMS. 

•  System placed in a glovebox with atmosphere T monitoring and purge gas control 

•  Decision was made to close the TSTA and relocate the TPE. 

Brief history of TPE and host tritium facilities (1/2) 
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III.  2002-present:  Safety and Tritium Applied Research (STAR) facility, INL 
•  Tritium contamination level as high as 300,000 dpm / 100 cm2 located within 

instrument racks and power supply chassis (CA limit is 10,000 dpm / 100 cm2). 

•  Decontamination efforts unsuccessful at reducing levels below CA limit. 

•  Substantial facility modifications were made to build a PermaCon enclosure (CA 
boundary), re-route and expand electrical service, modify facility ventilation, extend 
the fire suppression system into the PermaCon. 

•  Returned to deuterium operation in 2005, and returned to tritium operation in 2009. 

•  Performance:  maximum T throughput ~ 0.05g/day; experiment placed in a ventilated 
enclosure (HCA boundary) and Permacon enclosure (CA boundary); local T source 
from a 300 cc cylinder; T effluent captured on U-Beds, ion fluxes up to 1 A/cm2 and 
100 - 200 eV energy, decreased pumping speed to 900 l/s, diagnostics included 
Langmuir probes, QMS, and optical spectrometers. 

•  New capabilities at STAR:  

•  Handling of “neutron-irradiated materials” 

•  Cutting tritiated material in ventilated enclosure 

•  Plasma-driven tritium permeation capability 

Brief history of TPE and host tritium facilities (2/2) 
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•  TPE is contained within double enclosure (PermaCon Box and Glovebox) 

• TPE is unique in that it combines four specialized elements:  

•  (a) the ability to handle tritium (max. T inventory: < 1.5g in STAR)  

•  (b) a divertor-relevant high-flux plasma (max. ion flux: 4.0x1022 m-2s-1) 

•  (c) the ability to handle radioactive materials (STAR limit: < 100 mR/hr = 10 µSv/hr) 

•  (d) the ability to handle beryllium  

•  Plasma-driven tritium permeation capability (under development) 

Unique capabilities 

Tritium Plasma Experiment - TPE 

8 



Comparison	
  of	
  plasma	
  parameters	
  among	
  
Exis2ng	
  and	
  proposed	
  US	
  Linear	
  Plasma	
  Devices	
  
	
   PISCES-B (UCSD) TPE (INL) MPEX (ORNL) 

Deuterium ion flux: Γi (m-2s-1) 1021–1023 1020 – 3.7x1022	


 

>1023 

Incident ion energy: Ei (eV) 20–300  (bias) 50–200  (bias) ?? 
Electron temperature: Te (eV) 4 – 40  5 – 20 3-50 
Ion temperature: Ti (eV) 2 – 5  2 - 5  1 - 200  
Electron density: ne  (m–3) 1018–1019 1016 – 3.5x1018	

 1018-3x1019 
Max. heat flux: Pmax (MW/m2) 5 ~1.2 20 
Plasma diameter (mm) 75 50 120 

Max. specimen size ϕ ~ 25.4 mm disc ϕ ~ 50.8 mm disc 100 x 100 mm plate 
Pulse length (s) Steady state Steady state Pulse and Steady state 
Activated targets No Yes Yes 
Tritium No Yes No 
Beryllium Yes Yes/No* Yes 
Permeation capability No Yes** No 
Ion incident angle Normal Normal*** Inclined and Normal 

Plasma source (cathode) Reflex arc (LaB6) Reflex arc (LaB6) Helicon (no cathode) 
Year of operation Since 1988 Since 1989 Proposed phase 
 
Unique capabilities 

In-situ surface analysis, transient 
surface heating, beryllium testing 

Tritium use and diagnostics, 
neutron irradiated materials 

Electrodeless plasma  
(Helicon + ECH + ICH) minimizes 
plasma contamination by impurity 

NOTES:  *:       Beryllium has been extensively tested in TPE during it tenure at TSTA, LANL in 90’s, but it has not been actively tested in INL. 
 **:     Tritium plasma-driven permeation capability is under development with the SNL/CA collaboration  
 ***:   Incident angle can be varied upon target holder design, and the current target holder is designed for normal incidence only. 
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Past and present US-Japan collaborations: 
I.  JFY2001-2006 (Apr.2001-Mar.2007):   

–  The second Japan/US Program on Irradiation Test for Fusion 
Research (JUPITER-II) 
•  Corrosion and purification of molten salt (FLiBe) 
•  Mass transport of tritium in FLiBe 

II.  JFY2007-2012 (Apr.2007-Mar.2013):   
–  Tritium, irradiation, and thermofluid for America and Nippon (TITAN) 

•  Mass transport of tritium in lead lithium eutectic and development of 
tritium permeation barrier materials 

•  Tritium retention in HFIR neutron-irradiated tungsten 

III.  JFY2013-2018 (Apr.2013-Mar.2019):   
–  PFC evaluation by tritium plasma, heat, and neutron irradiation 

experiment (PHENIX) 
•  Tritium behavior (retention, diffusion, and permeation) in HFIR neutron-

irradiated tungsten 
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PHENIX project:	

The goal of this project is to evaluate the feasibility of He gas-cooled divertor 
with tungsten material armor for DEMO reactors. Main research subjects are 
listed below;	


1.  Heat transfer mechanism and modeling in He-cooled systems, improvement 
of cooling efficiency and system design.	


2.  Response of tungsten layered materials and advanced tungsten materials 
to steady state and pulsed heat loads.	


3.  Thermo-mechanical properties measurement of tungsten basic materials, 
tungsten layered materials and advanced tungsten materials after neutron 
irradiation at elevated temperatures relevant to divertor conditions 
(500-1200 oC).	


4.  Effects of high flux plasma exposure on tritium behavior in neutron-
irradiated tungsten layered materials and advanced tungsten materials.	


5.  Evaluation of feasibility (under ~10 MW/m2 heat load with irradiation of 
plasma and neutrons) and safety (tritium retention and permeation) of He-
cooled PFCs and clarification of critical issues for DEMO divertor design. 	
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 PHENIX project	


Task 3	

(TPE, Idaho INL) 

Plasma-Surf. Interac.	

Tritium Behavior	


Task 2	

(HFIR, Oak Ridge NL) 
Neutron-irrad. Effects 

Microstructure 
Physical Properties	


Task 1	

（IR facility, ORNL）	


Heat Load Tests	

Heat Transfer 

System Evaluation	


Material 
Properties, 
Neutron-irr. 
Samples	
 Tritium 

Behavior	


Neutron-
irradiated 
samples	


Alternative facilities with similar capabilities are also acceptable.	

M.Shimada   |   Tritium Focus Group meeting   |  Idaho Falls, ID  |   September 23-25, 2014 13 



Primary facilities (US)	

Task 1 : IR facility	
 Task 2 : HFIR	


Task 3 : Tritium Plasma Exp. (TPE)	


Research at ORNL and INL	


He loop in GIT is under consideration	
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New challenges in PHENIX project (2013-2019): 

Tritium behavior in realistic fusion nuclear environment 
•  Tritium behavior (retention and permeation): 

–  Deuterium/tritium retention by high-flux TPE plasma 
–  Gas-driven permeation in TLLE 
–  Plasma-driven permeation in TPE 

•  Realistic plasma conditions in divertor: 
–  High plasma exposure temperature (500-1000C) 
–  Mixed (D/T/He) plasma 
–  High flux (1022 – 1023 m-2s-1), high-fluence (1026 – 1027 m-2) 

•  Realistic fusion neutron irradiation 
–  Larger irradiation port (removable beryllium facility) 
–  HFIR irradiation with thermal neutron shielding  
–  High irradiation temperature (500-1300C) 
–  Deuterium gas environment 
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TPE modification 
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Current power supply location and  
control room (inside Permacon) 

New power supply location and  
control room (outside Permacon) 

•  Background and Safety issue in TPE operation with previous setup 
-  Heat issue (up to 95-100 F for tritium operation) in contamination area (CA) 
-  No space to put chair and desk in the current control room (inside Permacon) 
-  Exposure to tritium and beryllium 
-  Existing/old power supply unable to remote control and setup safety features 

•  Decision was made to setup new power supplies and control room outside 
of Permacon in order to eliminate the above four safety issues. 

 



Status of TPE modification (outside CA): 
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Photo of Highbay area on September 18 after DC cables installation 

  



Status of TPE modification (inside CA): 
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Photo of inside CA in September 17 after DC cables installation 

  



Status of TPE modification: 
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•  Installation of electrical breakers, disconnects, AC supply lines was 
completed in July 2014. 

•  Installation of DC cables (total length: 1000 ft ~ 300m) in Permacon 
(Contamination Area) was completed in September 2014. 

•  Installation of data acquisition system and safety interlock is underway. 
•  Installation of new cooling lines and manifold inside Ventilated Enclosure 

(High Contamination Area) is underway. 
•  Installation of new pressure gauges and thermocouples inside Ventilated 

Enclosure (High Contamination Area) is underway. 
•  Work Control Document will be revised in October – November 2014. 
•  First plasma after TPE modification is expected in December 2014. 

  



Temperature profile with old target holder 

•  Sample temperature is determined by plasma heating and heat conduction to the 
cooling plate 

•  At higher temperature (> 500 C), it takes 20-30 min to reach the desired 
temperature and 20-30 minutes to cool down to room temperature 

•  Maximum sample temperature obtained with old target holder was 700 C 
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Development of plasma-driven tritium permeation in TPE 
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Plasma Facing Components Mtg. | 21 June 2012 | Princeton, NJ!

Two new target designs for TPE tested 

5 

� Key challenge for plasma-driven permeation: 
stable operation at high temperature. 

� Developed two retention stages (Cu and 
Inconel) to test new design concept. 

� Leveraged concentric cooling channel design 
from PISCES. 

� Successful testing Inconel target to T=1000 
�C using He cooling. 

Cu target!!
Water!cooled!
T<500!°C!

Inconel target!!
He!cooled!
T=1000!°C!

TPE!viewport!
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TITAN Task 1-2 and 2-1 Workshop, July 31 – August 1, 2012 

 

Expanded View of Sample Region 

Plasma flux 

Axial view of 
cooling fins 

He sweep gas 

To ion chamber 

Thermocouple 

Cooling 

Inconel welded cooling 
fin assembly 

Permeation Sample 
(~ 25 mm dia.) 

Motivation: There is no plasma (ion)-driven permeation data from high flux device 



Effect of temperature profile during cooling down 
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–  We need to know temperature profile not only during plasma/ion implantation 
but also during cooling down especially for high temperature case (> 500oC) 

–  There exists the machine dependence when comparing the D/T retention data 
•  Low flux machine (< 1021 m-2s-1),   tconst > 100 sec due to active heating 
•  High flux machine (> 1022 m-2s-1),   10 < tconst < 100 sec due to active 

cooling 
•  tconst depends on the location (divertor plate, strike point, dome) in ITER  



Ion-damage W vs. neutron-irradiated W 
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1.  The trap concentration will most likely saturate at 1 at.% at > 1 dpa 
2.  T is trapped in ion-damaged range (2.5 µm)  vs. neutron-irradiated (>50 µm)  
3.  T depth profile at high (> 500C) temperature: 

•  For Edetrap=1.4 eV,   Most of T can be desorbed during ramp-down if tconst >100 sec 

TMAP at Edetrap=1.4 eV 



Ion-damage W vs. neutron-irradiated W 
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1.  The trap concentration will most likely saturate at 1 at.% at > 1 dpa 
2.  T is trapped in ion-damaged range (2.5 µm)  vs. neutron-irradiated (>50 µm)  
3.  T depth profile at high (> 500C) temperature: 

•  For Edetrap=1.4 eV,   Most of T can be desorbed during ramp-down if tconst >100 sec 
•  For Edetrap=1.8 eV,   T is still trapped during ramp-down if tconst <100 sec 

TMAP at Edetrap=1.8 eV 



-  Tritium Plasma Experiment (TPE) is the unique linear plasma device to 
study tritium behavior in plasma-facing components (PFC) materials. 

-  With US-Japan collaboration PHENIX project, TPE will investigate tritium 
retention in neutron-irradiated tungsten. 

-  Electrical systems and power supplies are replaced to enhance operator 
safety in TPE 

-  TPE plan to restart by the end of December 2014. 
-  Plasma-driven permeation holder will be tested in 2015. 
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Summary: 
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