

Tritium Focus Group Meeting @INL 2014.9.23

Overview of tritium activity in Japan

Yasuhisa Oya Graduate School of Science, Shizuoka University

Research Subjects and Institutes for Tritium Issues

Research Subjects

- Fusion
 - (Processing, Blanket, First Wall, Safety, Licensing)
- Fission Reactor (Heavy Water Reactor)
- Waste Management
- Environmental Behavior
- Biological Effects
- Fundamental Science

Institutes

- Universities
- Japan Atomic Energy Agency
- National Institute for Fusion Science (NIFS)
- National Institute of Radiological Sciences (NIRS)

Key tritium issue for Fusion Engineering Researches

Tritium/Material Interaction

- Plasma Facing Materials
- Structural Materials
- > Blanket Engineering
 - Breeding Materials
 - Tritium Breeding Ratio
 - Tritium Recovery
 - Tritium Permeation
- Tritium Processing and Safety

Tritium Behavior in Environment

Institutes and Universities where Tritium Related Studies are conducted in Japan

Tritium Network in Japan

Academic Societies

- Atomic Energy Society of Japan
- The Japan Society of Plasma Science and Nuclear Fusion Research
- The Japan Radiation Research Society

Conferences

(International and Domestic)

- Tritium Science and Technology
- •ISFNT, TOFE, PSI, SOFT
- -Joint Symposium, -----
- Pacific-Asia T WS (J-C T WS)

Tritium facilities in Japan Atomic Energy Agency

Tritium Facilities for Fusion Research in Japan Atomic Energy Agency

BA(Broader Approach) R&D center (2012~) T storage: 7.4TBq w/ radioisotopes handling

Tritium Process Laboratory (1987~) T storage: 60g (29g actual) for only T handling

Research activities in T Facilities of JAEA

In Tritium Process Laboratory

Main Purposes are to develop 1) fuel cycle technology for fusion reactor, and 2) tritium safety handling technology. Now, we focus to <u>the ITER Detritiation</u> <u>System (DS) Procurement</u>

Activities

- 1. Pilot scale Wet Scrubber Column (SC) performance test for DS (completed)
- 2. Procurement of DS
- 3. Qualification

In BA(Broader Approach)-R&D center

Main Purpose is to implement Tritium R&D for DEMO under BA

Activities

- 1. Tritium accountancy development
- 2. Tritium-material interaction study including JET tile/dust analysis
- 3. Tritium durability test

Many Japanese Universities (Hokkaido, Toyama, Tokyo, Shizuoka, NIFS, Osaka, Kyushu, etc.) participate in this program under the collaboration with JAEA

In this center, not only tritium study but also material development (RAFM, SiC/SiC, Blanket materials : Li & Be) are carried out under BA.

National Institute for Fusion Science [NIFS]

Staff : Masa Tanaka, Naofumi Akata, Takuya Saze, Takao Kawano, Kiyohiko Nisimura

Study of tritium safety control and environmental tritium

Research Topics

- Large Helical Device [LHD] research project
 - Tritium removal system [TRS] for LHD exhaust gas
 - Application of polymer permeable membrane to recovery tritiated water
 - > Exhaust gas analysis under deuterium plasma experiment for tritium mass balance study
 - Environmental tritium, radioactivity and radiation monitoring
 - > Fallout, aerosol, atmosphere, river water, precipitation, soil, organic sample, etc
 - > Development of environmental radiation [neutron, gamma ray] monitoring system

Fusion Engineering Research project [Collaboration with universities]

- Development of fuel cycle and tritium safety system
 - Feasibility study of fuel cycle system [EXPRESS] and proposal of new fuel cycle concept
 - Cryogenic pressure swing adsorption [PSA] process for ISS
 - Advanced combined electrolysis and catalytic exchange [CECE] process for WDS Multi column PSA system
 - Advanced tritium oxidation and regeneration of absorbent for TRS
- Environmental impacts and biological effects of tritium
 - > Development of a code to simulate tritium transfer in the environment
 - Study of the biological effects of tritium at the cellular level and by using genetically engineered animals

Fuzion Engineering

erearch Projec

"PSMAP"

Advanced CECE

system "DTDP-CECE"

LHD deuterium plasma experiment ~ for public consent ~

Environmental monitoring

✓ River water [1982-] Precipitation [1990-] Organic sample [1998-]

Soil [2012-]

✓ Fallout [2014-] ✓ Aerosol [2014-]

Atmosphere [2004-]

Stack

Tritium removal system for LHD exhaust gas

- Molecular sieves type for deuterium plasma exhaust gas \triangleright
- Polymer membrane type for LHD maintenance period
- Aqueous and gaseous effluent tritium monitor
- Environmental tritium/radioactivity monitoring

The University of Tokyo

Staff : Takayuki TERAI & Akihiro SUZUKI

http://lohas.t.u-tokyo.ac.jp/yunen/index.html fhttps://www.facebook.com/terailab <u>The approach to the energy and environmental issues</u> <u>from the viewpoint of materials science &</u> <u>the research and the development of elemental</u> <u>technology for new energy system</u>

RESEARCH SUBJECTS

- [1] <u>Material chemistry research for</u> nuclear fusion reactors
- \rightarrow Chemical reactivity & tritium behavior of solid breeder Li₂TiO_{3+x}
- →Behavior of tritium and non-metallic impurities in liquid breeders (Li, Li-Pb, Flibe, etc.)
- →H isotope behavior in permeation reduction coatings
- [2] Material research for advanced energy systems and energy & environmental problems
- [3] Material processing with high-energy particles

Impurity recovery from liquid lithium

Improvement of hydrogen recovery efficiency by nitrogen removal

Shizuoka University

Staff : Yasuhisa Oya & Takumi Chikada

Tritium behavior in fusion related materials based on radiochemical aspects

Research Topics

- Correlation of D retention with irradiation damages in W
- Development of tritium permeation barrier

mpuritie

- T retention enhancement in W by LHD plasma exposure
- Behavior of ¹³⁷Cs & T in tea leaf

Plasma Wall Interaction (PWI) issues Simultaneous ion implantation (D, T, He, C) & Neutron irradiation effects on fuel retention

Blanket issues

- Tritium recovery from lithium oxides
- Behavior of irradiation damages

Tritium recovery and cooling system issues Tritium permeation behaviors through structural materials

Shizuoka University

Correlation of D retention with irradiation damages

D retention and desorption behavior for ion-damaged W and comparison by simulation.

Most of D was desorbed at higher temperature of ~750 K, indicating that D was trapped by voids. The D retention was clearly changed by the implantation temperature.

Development of tritium permeation barrier

Permeation reduction: up to 1/10⁵

→ Er₂O₃ coating has a high potential as hydrogen permeation barrier

Permeation mechanism in the coatings has been investigated through experiments and computer simulations

Shizuoka University

Hydrogen Isotope Research Center (HRC), University of Toyama

HRC is one of the largest tritium research facilities in Japanese universities and licensed to handle 8 TBq (217 Ci) tritium per day and 555 TBq (15 kCi) per year.

Research Staffs: 3 Professor, 3 Associate Professor, 1 Assistant Professor 1 Research Fellow, 1 Foreign Researcher (Guest Professor)

Education: Department of New Energy Science (Ph. D. course) Department of Chemistry (Master course)

Main Directions of Research

- (1) Development of safe handling techniques of tritium for fusion reactors
- (2) Hydrogen isotope behaviors in fusion reactor materials
- (3) Development of functional materials for hydrogen energy system (catalysis, separation membrane etc.)

Uniqueness of Tritium Facility

- (1) Handling of tritium in any chemical/physical form
- ✓ Tritium gas exposure
- ✓ Tritium ion implantation (~keV)
- ✓ Tritium glow discharge
- ✓ HTO vapor exposure

(Apparatus)

BIXS spectra of stainless steel

(2) Various instruments for tritium measurements

- \checkmark β-ray-induced X-ray spectrometry (BIXS)
- ✓ Imaging plate (IP)
- ✓ High sensitivity calorimeter
- (3) Various tools for characterization of tritiumcontaining materials.
- ✓ X-ray photoelectron spectroscopy
- ✓ Field-emission scanning electron microscope
- ✓ X-ray diffraction

Current Tritium-Related Research

(1) Tritium measurements

- ✓ T distributions on JET ITER-like wall tiles with IP and BIXS (collaboration with EUROfusion)
- ✓ Near-infrared spectroscopy for HTO detection with non-hygroscopic windows

- (2) Tritium/hydrogen isotope behaviors in fusion materials including neutronirradiated materials
- ✓ Hydrogen isotope retention in neutron-irradiated tungsten (Japan-US collaboration TITAN and PHENIX, collaboration with IMR, Tohoku U.)
- ✓ Detritiation of fusion reactor materials

(3) Application of tritium to materials science (e. g. visualization of hydrogen isotopes in solids by autoradiography)

HRC plays a role of national user facility through collaboration program of NIFS. International collaboration is also welcome.

Kyushu University

Interdisciplinary Graduate School of Engineering Sciences, Department of Advanced Energy Engineering Science, **Energy Chemical Engineering**

Students

HTO behavior in concrete and soil

T permeation in Solid Breeder-Water coolant blanket system

Tritium recovery from liquid blanket loop

Overview of the Li loop with Y trap

Distribution factor between Li and Y

Percolation behavior of HTO into a soil packed bed

Percolation experimental system & Soil packed bed

T conc. in effluent water

T retention is larger than water retention because of T trap by isotope exchange reaction of T with structural water.

Li mass loss & T behavior in solid breeder materials

1%H₂at 900°C

Current Activities of the Laboratory of <u>Materials Science in Extremely</u> <u>Severe Conditions</u> (<u>Nuclear Materials</u>), Kyushu University.

Laboratory members: K. Hashizume and T. Otsuka

Our laboratory has been devoted to the studies on the hydrogen isotope (tritium) behavior in fusion, fission and other energy-related materials using tritium tracer methods (liquid scintillation counting method, imaging plate technique and autoradiography).

(1) Tritium permeation induced by water corrosion of metals

Issues on tritium permeation leakage from storage tanks of tritium contaminated water

Schematics of automated long-term permeation exp. apparatus

Successful observation of tritium permeation induced by water corrosion of pure iron

(2) Visualization of Tritium Distribution

2-1. Tritium Diffusion Behavior in Zr-contented BaInO_{2.5} (Proton conducting Ceramics) using Tritium Imaging Plate: Tritium Solubility and Diffusivity Dependences on Zr Content

2-2. Tritium depth profiling and its application to determination of hydrogen diffusion coefficients in nuclear fusion materials IP measurement on the Depth profile of tritium loaded

Schematics of tritium implantation exp. by DC glow discharged method

IP measurement on the tritium loaded surface and the cross-section surface

Depth profile of tritium loaded in F82H steel at 573 K for 1 h

Hokkaido University

Staff : Yuji Yamauchi, Yuji Nobuta

Main subject

• Effects of impurity/inert gas/neutron implantation on hydrogen retention and release behavior in fusion related materials.

Research topics

- Effect of impurity and inert gas implantation on D retention behavior in W and F82H
- Deuterium retention property of W-coated F82H
- Study on plasma-wall interaction in LHD using long-term samples
- Effect of neutron and helium irradiation on deuterium retention behavior in W and F82H
- Helium implantation effects on T retention and release behavior in W

(Example of results)

He implantation effect on hydrogen desorption and long-term hydrogen release in W

He implantation into W influences not only thermal desorption but long-term T release behavior

Summary

This presentation overviews the recent tritium related research activities in Japan. Many researchers involve the tritium research and key collaboration between JAEA, NIFS and universities enhances the tritium science and engineering research activities.

International collaborations with ITER, China, Korea, EU, US and etc. are also good opportunity to exchange the information and technique for tritium handling.

We always welcome you to visit Japan.

Shizuoka University