

Lithium-Ion Battery Production and Recycling Materials Issues *Project ID: ES229*

VTO Annual Merit Review June 9, 2015

Linda Gaines and Jennifer Dunn Argonne National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Acronyms list

BatPaC	Battery Performance and Cost (model)
BEV	Battery electric vehicle
BMS	Battery management system
EV	Electric vehicle
GHG	Greenhouse gas
GREET	Greenhouse gases, Regulated Emissions, and Energy use in Transportation
нт	Hydrothermal
ICP-MS	Inductively coupled plasma mass spectroscopy
ICV	Internal combustion engine vehicle
IEA	International Energy Agency
LCA	Life cycle analysis
LCO	Lithium cobalt oxide
LFP	Lithium iron phosphate
LMO	Lithium manganese oxide
LMR-NMC	Lithium manganese-rich nickel manganese cobalt
NCA	Nickel cobalt aluminum
NMC	Nickel Manganese Cobalt

NMP	n-Methylpyrrolidone	
PHEV	Plug-in hybrid electric vehicle	

- PVDF Polyvinylidene fluoride
- SS Solid state
- USGS United States Geological Survey

Overview

Timeline

- Project start date: FY2008
- Project end date: Ongoing
- On schedule

Budget

	FY 14 Funding (\$k)	FY 15 Funding (\$k)
Life Cycle Analysis	\$100	\$100
Battery Reuse and Recycling	\$125	\$125
IEA Task 19	\$40	\$40
Total	\$265	\$265

Barriers

- Automotive lithium-ion battery performance, safety, and environmental metrics must be cooptimized
- Battery recycling technology must handle uncertainty in battery chemistry developments
- Computational models, design, and simulation methodologies must be developed
- Constant advances in technology require model updating

Partners

- In-kind
 - JOANNEUM Research
 - German Aerospace Center (DLR)
 - EMPA
- Supported
 - OnTo Technology
 - University of Wisconsin at Milwaukee

Relevance and Project Objectives

- Project Objectives:
 - Examine material scarcity issues that may influence viability of automotive lithium-ion batteries
 - Characterize drivers of cradle-to-gate energy and GHG emissions intensity of lithium-ion batteries and identify means for their reduction
 - Characterize lithium-ion battery recycling in the United States and abroad to identify the most promising recycling technologies as they evolve, barriers to recycling, and influence of recycling on material scarcity
 - Engage with the international battery analysis community to exchange information, improve analysis, and formulate electric vehicle life cycle analysis results communication
- Relevance:
 - Examining cradle-to-gate lithium ion battery production and battery recycling can identify unforeseen barriers and significant environmental impacts in the battery supply chain

Key Milestones

Date	Milestone	Status
3/14	Present electrolyte and cobalt/nickel production influence on recycling benefits at international conference	Complete
9/14	Journal article submitted analyzing FY14 lithium-ion recycling research	Complete
3/15	Present battery recycling barrier analysis at International Battery Seminar	Complete
6/15	Preliminary data in hand for revised and expanded anode choices in GREET and available in draft GREET version	On track
9/15	Cradle-to-gate life cycle results for lithium-ion batteries with graphite, silicon, and lithium anodes provided in memo to VTO	On track
9/15	Provide a report on the progress and status of IEA Task 19	On track

Approach/Strategy: Project flow

- 1. Battery Performance and Cost
- 2. Greenhouse gases, Regulated Emissions, and Energy use in Transportation

Approach/Strategy: GREET battery module estimates material and energy consumption, air emissions associated with battery production and recycling

Vehicle characteristics and fuel economy

Autonomie

Battery cost and composition to achieve a given performance

BatPac

GREET Battery Module

Energy, GHG, and air emissions intensity of battery cradle-to-gate production and recycling

Technical Accomplishments and Progress

- 1. Material Scarcity
- 2. Environmental and Energy Analysis of Lithium-Ion Battery Production from Cradle to Gate
- 3. Recycling of Automotive Lithium-Ion Batteries
- 4. International Engagement

Technical Accomplishments and Progress

- 1. Material Scarcity
- 2. Environmental and Energy Analysis of Lithium-Ion Battery Production from Cradle to Gate
- 3. Recycling of Automotive Lithium-Ion Batteries
- 4. International Engagement

Lithium supplies should be adequate but cobalt and nickel supplies could be strained

	Cumulative Li Demand	Material	Availability (MT)	(
	to 2050 (MT)	Со	13	Γ
Large batteries, no	6.5	Ni	150	
recycling		AI	42.7	
Smaller batteries	2.8	Iron/	4000	l
o recycling	2.0	Steel	1320	⊢
no recycling		Р	50,000	
Smaller hatteries	20	Mn	5200	
recycling	2.0	Ti	5000	
	Reserve Estimates			
USGS Reserves*	13		4	
			(high)	I
USGS World Resource*	29		s uergy	
Other Reserve Estimates	30+		clean e	

*Revised January 2011:

http://minerals.usgs.gov/minerals/pubs/commodity/lithium/mcs-2011-lithi.pdf

Technical Accomplishments and Progress

- 1. Material Scarcity
- 2. Environmental and Energy Analysis of Lithium-Ion Battery Production from Cradle to Gate
- 3. Recycling of Automotive Lithium-Ion Batteries
- 4. International Engagement

GREET battery module contains life-cycle inventory of lithium-ion battery production and recycling

Cobalt and silicon are the most energy-intensive materials to include in supply chain

Dunn, JB; Gaines, L; Kelly, J.C.; James, C.; Gallagher, K. G.," The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction.", *Energy and Environmental Science* 8: 158-168 (2015)

Batteries are small contributors to life-cycle energy use and CO₂ emissions

Dunn, JB; Gaines, L; Kelly, J.C.; James, C.; Gallagher, K. G.," The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction.", *Energy and Environmental Science* 8: 158-168 (2015)

But they make significant contributions to life-cycle SOx emissions, especially if the cathode contains Co or Ni

Dunn, JB; Gaines, L; Kelly, J.C.; James, C.; Gallagher, K. G.," The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction.", *Energy and Environmental Science* 8: 158-168 (2015)

Technical Accomplishments and Progress

- 1. Material Scarcity
- 2. Environmental and Energy Analysis of Lithium-Ion Battery Production from Cradle to Gate
- 3. Recycling of Automotive Lithium-Ion Batteries
- 4. International Engagement

Recycling multiple materials maximizes energy savings and emission reductions

Dunn, JB; Gaines, L; Sullivan, J; Wang, MQ," The impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.", *Environmental Science and Technology*, 46: 12704-12710 (2012)

Recycling metals made from sulfide ores reduces cathode environmental burden

Available processes recover different products

	Pyrometallurgical	Hydrometallurgical	Physical
Temperature	High	Low	Low
Materials recovered	Co, Ni, Cu (Li and Al to slag)	Metals or salts, Li ₂ CO ₃ or LiOH	Cathode, anode, electrolyte, metals
Feed requirements	None	Separation desirable	Single chemistry required
Comments	New chemistries yield reduced product value	New chemistries yield reduced product value	Recovers potentially high-value materials; Could implement on home scrap

Cathode viability is key to economics for cathodes with low elemental values

- Cathode materials are valuable, even if elements aren't
- What processes enable retaining cathode properties?
- Acid/base could separate active materials from substrates
 - Would that damage cathode morphology?
 - How does the answer depend on pH, temperature, and time?

Cathode materials' performance will be tested after treatment with acid or base

- The plan:
 - Characterize the materials after treatment in aqueous solutions
- Details:
 - Cathodes: LCO, NMC, NCA, LMO and LFP
 - Solutions: hydrochloric acid, water, ammonium hydroxide
 - pH: 2, 7, 12 (0.25 molar)
 - Temperatures: 30°, 50° C
- Before and after measurements:
 - Analysis by ICP-MS
 - Electrochemical testing in half cells
- Preliminary results show loss of Li in acid
 - Final results will be available by July

LCO in acid, water, base

Challenges to recycling can be addressed by R&D

Challenge	R&D needed to address
Long-term performance of some	Long-term testing
recycled materials is not proven	
There is no standard chemistry	Convergence of chemistries and
or design	designs
	Flexible processes
	Design for recycling
	Automation
There are no regulations, so	Fashioning regulations that will
restrictive ones could be	protect health and safety without
imposed	hindering recycling
Many of the constituents have	Process development to recover
low market value	multiple high-value materials
Low value of mixed streams, prevention of fires and explosions	Effective labeling and sorting

Why be Concerned?

Technical Accomplishments and Progress

- 1. Material Scarcity
- 2. Environmental and Energy Analysis of Lithium-Ion Battery Production from Cradle to Gate
- 3. Recycling of Automotive Lithium-Ion Batteries
- 4. International Engagement

IEA Hybrid and Electric Vehicle Implementing Agreement Task 19: Electric Vehicle Life Cycle Analysis

- Engaged in task planning and now serve as Vice Operating Agent
- Objectives include facilitating information exchange among international experts, identifying outstanding issues in EV LCA, and communicating results and information to a broader audience.
- Argonne presented at all workshops
 - LCA Methodology and Case Studies (December 2012, Braunschweig)
 - LCA Aspects of Battery and Vehicle Production (April 2013, Argonne)
 - End of Life Management (October 2013, Davos)
 - LCA of Electricity Production and Infrastructure (October 2014, Barcelona)
- Conference papers and presentations produced
- Workshop planned to cap off project in Vienna, fall 2015
- Task extension to address air, water, land (use, waste, and resource use) impacts of EVs in depth

Response to Previous Year Reviewers' Comments

This project has not been previously reviewed.

Collaboration and Coordination with Other Institutions

- Collaboration with entities involved in IEA Task 19
 - JOANNEUM Research (Austria)
 - German Aerospace Agency (DLR)
 - EMPA (Switzerland)
- Interactions with battery industry (e.g., SAFT, Johnson Controls, East Penn)
- Interactions with recycling companies (e.g. Entek, JCI, BCI, ALABC, Umicore, Onto)
- Collaboration with Beijing Institute of Technology led to energy and environmental assessment of hydrometallurgical recycling process and paper

Remaining Barriers and Challenges

- New cathode materials and battery compositions require expansion of GREET battery module to address evolving technology
- Data access can be limited given emerging and evolving technology status, proprietary data concerns
- Analysis has focused on GHG and energy impacts; other media (e.g., water) should be examined for show-stoppers
- Characterizing material and energy flow data for anode materials (ongoing)
- Demonstration and analysis of viable recycling processes for promising chemistries

Proposed Future Work

- Collaboration with Joint Center for Energy Storage Research and BatPaC model developers at Argonne to identify emerging chemistries that merit analysis
- Refine GREET module as new data become available
- Examine local impacts of battery material production (e.g., emissions to air and water)
- Refine analysis of recycling processes to better estimate benefits and enable optimum process development
- Examine alternative sources of cathode metals, such as recycled batteries from electronic devices

Summary

- Argonne's analysis enables VTO to identify the drivers of automotive lithium-ion battery energy and environmental impacts, guide R&D to mitigate them, and address stakeholder concerns regarding these impacts
- Engagement with the international battery analysis community enables information exchange and results dissemination
- The cradle-to-gate energy consumption and GHG emissions associated with battery production and recycling vary with battery chemistry
- Material production, especially that of Co- and Ni-containing cathode materials, drives cradle-to-gate lithium-ion battery production impacts
- Recycling reduces concerns about material supply, production impacts, and waste disposal

Backup Slides

Battery module constructed to evaluate different chemistries

- Selected chemistries based on BatPaC and Argonne Research and Development
 - NCM: LiNi_{0.4}Co_{0.2}Mn_{0.4}O₂
 - $\ LMR-NMC: 0.5Li_2MnO_3 \cdot 0.5LiNi_{0.44}Co_{0.25}Mn_{0.31}O_2$
 - LCO: LiCoO₂
 - LFP: LiFePO₄
 - LMO: LiMn₂O₄
- Graphite-Silica anodes for LMR-NMC; other chemistries are paired with graphite anodes
- For some cathode materials investigated two preparation techniques:
 - HT: Hydrothermal
 - SS: Solid State
- Material and energy flows developed based on literature data, engineering calculations

Cobalt- and nickel-containing cathode materials are most energy intensive to produce

Dunn, JB; Gaines, L; Kelly, J.C.; James, C.; Gallagher, K. G.," The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction.", *Energy and Environmental Science* 8: 158-168 (2015)

HT: Hydrothermal SS: Solid State

Cobalt and nickel production is SOx intensive

Dunn, JB; Gaines, L; Kelly, J.C.; James, C.; Gallagher, K. G.," The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction.", *Energy and Environmental Science* 8: 158-168 (2015)