

Energy Efficiency & Renewable Energy

Push-pull well testing using CO₂ with active source geophysical monitoring

Project Officer: William Vandermeer Total Project Funding: \$

May 11, 2015

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Principal Investigators: Oldenburg and Daley Lawrence Berkeley National Laboratory

Energy Efficiency & Renewable Energy

Project Motivation and Objective

- EGS benefits from ability to control fracture flow and fracturing (e.g., hydraulic or thermal fracturing).
- In order to control, need ability to characterize fractures.
- Natural and induced fractures are hard to image.
 - Seismic and electrical contrast is small for water-filled fractures
- In contrast, gas-filled fractures enhance contrasts.

From: Xue, Z., J. W. Kim, S. Mito, K. Kitamura, and T. Matsuoka. "Detecting and monitoring CO_2 with P-wave velocity and resistivity from both laboratory and field scales." In SPE International Conference on CO_2 Capture Storage and Utilization. Society of Petroleum Engineers, 2009

Project Motivation and Objective

- Develop and demonstrate a new technology for characterizing fractured geothermal systems by modeling coupled:
 - CO₂ push-pull well testing
 - Active source geophysical monitoring
 - Well logging
- CO₂ injected for push-pull well testing has a strong preference for flowing in fractures (it is non-wetting).
- LBNL has advanced simulation and related inversion capabilities for CO₂ at geothermal conditions (TOUGH2/ECO2H, iTOUGH2).

Energy Efficiency & Renewable Energy

Project Motivation and Objective

 We are bringing long experience with CO₂ from DOE's Fossil Energy program to bear on EGS.

Fractures filled with CO_2 were imaged using active source seismic monitoring at the In Salah CO_2 storage project. Data show curvature attribute for a time-slice of 3D seismic data (LBNL).

This new technology will provide better characterization of

 Fracture spacing, aperture, connectivity, porosity, fracture-matrix flow, heat transfer potential

- In this project, we are modeling integrated CO₂ push-pull well tests with geophysical monitoring (active seismic and well logging) to characterize key fracture properties.
- The approach is joint inversion of modeled well-test and modeled geophysical monitoring data to estimate key properties of fractured geothermal reservoirs.

Scientific/Technical Approach

Energy Efficiency & Renewable Energy

- Summary of project tasks:
 - Define relevant reservoir-fault characteristics
 - Carry out forward simulations of CO₂ injection and production
 - Design geophysical monitoring scenario
 - Carry out simulations of geophysical monitoring
 - Invert hydrologic and geophysical responses to push-pull with monitoring
 - Evaluate and assess results
 - Develop field validation plan

ENERG

- We defined possible fractures in a topological context. We are ${\color{black}\bullet}$ considering fracture sets of Topology X and XY primarily with varying degrees of connectivity to test and develop the push-pull CO_2 imaging and hydraulic testing approach.
- Many U.S. and European geothermal systems exhibit poorly connected vertical fracture sets (Topology X (= Y)).
 - Pyramid Lake _
 - Gerlach
 - Buffalo Valley
 - **Desert Peak**
 - Soultz
 - Gross Schoenbach

Topology XY

We will simulate CO_2 injection and production and associated hydraulic response along with geophysical detection approaches to test the approach.

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Fracture geometry

The geometry is a simple vertical fracture (topology y), which has dimensions of:

- x = 500 m, with 5 m cell side length;
- $y = 10^{-4} m$, just 1 cell;
- z = 500 m, with 5 m cell side length.

Gravity is parallel to z.

Fracture boundary conditions

To simulate a well-connected fracture, all four boundaries are constant P, T, x (conditions don't change)

Fracture properties

Density = 2650 kg/m^3 Porosity = 0.20;

Two cases:

1) Permeability = $1.0 \times 10^{-12} \text{ m}^2$ in all directions;

2) Permeability = $1.0 \times 10^{-13} \text{ m}^2$ in all directions;

Formation heat conductivity = 2.1 W/(m °C);

Rock grain specific heat = $1.0 \times 10^3 \text{ J/(kg \circ C)}$.

production -40 bar

U.S. DEPARTMENT OF ENERGY R

Energy Efficiency & Renewable Energy

Exp. 3.2 → k = 10⁻¹² m²

Note the large pressure anomaly developing at the start of production, which decreases as the CO_2 flows back into the well.

U.S. DEPARTMENT OF ER

Energy Efficiency & Renewable Energy

Exp. 3.2 → k = 10⁻¹² m²

Note that:

- Higher permeability leads to larger extent of plume.
- Buoyancy effects become particularly relevant during production.

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

ENERGY

- Using simulated fracture, saturation, and CO₂ properties, we have calculated the stiffness component C11.
- C11 represents the stiffness of normal stress to normal strain, located at the top left of the stiffness tensor matrix (above).
- For our work on fracture stiffness, C11 represents the stiffness in the direction normal to the fracture plane.
- Because the fluid influence on the shear modulus can be neglected, the normal stiffness is especially important for seismic detection of the fluid effect.

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
M1.2 Ppt summarizing end-member fracture characteristics	Same	Jan. 4, 2015
M2.1 Ppt summarizing simulations of CO2 well tests in fracture	Same	Mar. 13, 2015

- Expected outcome is demonstration by modeling of the coupled push-pull hydrologic and geophysical monitoring approach to characterize fractures.
- A field validation plan will be developed as the last task.

Future Directions

Milestone or Go/No-Go	Status & Expected Completion Date
G2.3 Show through simple model that typical CO2 saturations in fractures can be imaged by seismic and/or well logging approaches.	In progress. Preliminary calculation of C11 shows strong sensitivity to CO_2 saturation. Expected completion September 2015.
M3.1 Ppt summarizing design of geophysical monitoring scenario	March 2016
M3.3 Ppt summarizing design of well-logging scenario	March 2016
M4 Ppt summarizing simulation of well logging	June 2016
G4 Demonstrate ability to simulate seismic imaging of CO2 in a fractured reservoir	September 2016
M5.2 Ppt summarizing inversion of virtual geophysical data	December 2016
G5 Demonstrate ability to jointly invert well- test, geophysical, and well logging data to estimate fracture locations and properties	March 2017
M6 Written final report	June 2017
M7 Written plan prospectus for potential field deployment	September 2017

- CO₂ injected for push-pull well testing has a strong preference for flowing in fractures.
- Seismic wave speed, electrical resistivity, and well logging are sensitive to CO₂ saturation.
- This project examines integrated use of CO₂ push-pull well tests with geophysical monitoring to characterize key fracture properties.
- The approach is joint inversion of modeled well-test and modeled geophysical monitoring data to estimate key properties of fractured geothermal reservoirs.
- We are making steady progress toward project goals.