Geothermal Technologies Office 2015 Peer Review

ENERGY Energy Efficiency & Renewable Energy

Radioisotope Tracers to Define Fracture Attributes for EGS

Project Officer: Lauren Boyd Total Project Funding: \$1.013M May 11, 2015

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Principal Investigator: John N. Christensen Earth Sciences Division Lawrence Berkeley National Lab

Tracers/Zonal Isolation/Geochemistry

Characterization goal:

 Complete 3D reservoir, stress and fracture models constrained by all observations

U.S. DEPARTMENT OF

IENERC

Energy Efficiency &

Renewable Energy

Contribution:

- Isotopic tracers that will constrain the surface area and aperture of hydraulically conductive fractures
 - Focus on short lived radioisotopes such as ²²²Rn
 - Compliment with 87 Sr/ 86 Sr and 518 O that probe fracture spacing

Challenge: The distribution of fractures and their properties (e.g. surface area, aperture, spacing and reactivity) are poorly quantified in both natural enhanced geothermal systems.

Proposed Solution: Utilize isotopes with differing reactive length scales to quantify surface properties.

Challenge: Identify isotope tracers that are primarily sensitive to the fracture surface area and limited "communication" with the rock matrix.

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

²³⁴U 2.45e⁵ Yr ²³⁸ t_{1/2} 4.55e⁹ Yr ²³⁴Pa t_{1/2} 6.7 h α ²²²Rn: ²³⁰Th t_{1/2} 24.1 ²³⁴Th Days t_{1/2} 24.1 Days t_{1/2}=3.7 days Noble gas ²²⁶Ra t_{1/2} 1600 Yr Nominally low α sorption/partitioning to solid ²²²Rn phases t_{1/2} 3.7 Days β,α ²⁰⁶Pb Stable daugter

Proposed Solution: Short-lived isotopes in the uranium decay series.

Challenge: Prior work using ²²²Rn to calculate fracture aperture was not widely successful.

We hypothesize a mechanistic understanding of the emanation factor (*E*) at fracture surfaces will make ²²²Rn a powerful tracer of fracture surface properties.

Proposed Solution: Careful lab experiments coupled with reactive transport modeling.

Technical Approach Summary

- Construct simplified analytical and numerical models to approximate uranium series isotope behavior in geothermal waterrock systems
- 1) Use preliminary model results to design hydrothermal experiments
- 2) Characterize the physical, chemical and isotopic properties of the starting rock material

In progress

- Conduct reactive transport experiments
 Beginning ~25th of May
- 4) Compare experimental and model results, revise hypotheses as necessary

Technical Approach Summary: Reactor Design

Key features:

- Precise control of T, P and fluid velocity
- Continuous and automated influent
- Continuous and automated ²²²Rn
- Fraction collection of fluid samples
- Ability to adapt for temperature gradient non-H₂O fluids (e.g. CO₂) in the future

Technical Approach Summary: Modeling Design

- 1. Dual Porosity 1-D 1 meter column
- 2. Pore space: $k=10^{-11} m^2$, 40% of total volume
- 3. Grains: k=10⁻²² m², 1% internal porosity
- 4. Diffusive (dominant) and advective transport between grains and pores
- 3% "direct" emanation of ²²²Rn from grains: R = 6.54e-18 mol/s. 6ppm Uranium in bulk rock
- 6. ²²²Rn emanation from minerals: 1e-23 mol/s
- 7. 226 Ra+2(aq) -> 222 Rn(aq): R = 1.372 e-11 mol/L/s
- 8. 222 Rn(aq) decay: Decay constant = 2.095e-6 1/s
- Desert Peak Tuff chemistry (will change to Bishop Tuff once characterization is complete)

Scientific/Technical Approach

Energy Efficiency & Renewable Energy

- Pore-Scale Dual-Continuum Model For Porous Grains:
- To capture diffusion, local reactive surface area and equilibria

At each spatial location, there are two coexisting continua: grains and pores. For a dual-continuum, under transient conditions the distance from internal micropores to external macropores should be ~ 1/6 the radius (Zimmerman et al., 1993).

Thus 2 reactive surfaces areas: External grains and internal pores

Energy Efficiency & Renewable Energy

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Technical drawings for experimental reactor are completed and procured	Design completed and procurement initiated. Final components will be delivered in Q3	12/2014
Conceptual TMHC model including thermodynamic and kinetic data is compiled and verified	Modeling framework is completed.	3/2015
Preliminary characterization of experimental materials	Raw materials prepared, characterization in progress	6/2015 target

Preliminary modeling results:

highlights:

- Predict "steady-state" ~1 pore volume
- Predicted ²²²Rn activities are within our measurement capability

Milestone or Go/No-Go	Status & Expected Completion Date
Install and test reactor	Expected delivery of reactor in early May Expect installation and safety considerations completed by 6/1/2015
Run first set of experiments	6/1/2015-8/1/2015
Characterize natural fracture coatings and vein minerals to probe parent isotope heterogeneity	In progress/expected completion 9/2015

- Project is in Stage 1 but on schedule.
- Scientific idea and approach is sound
- Project team is engaged and communicating well with one another
- We are leveraging our knowledge from prior EERE and Office of Science funded research to make rapid progress.