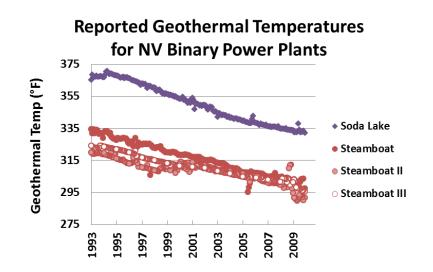
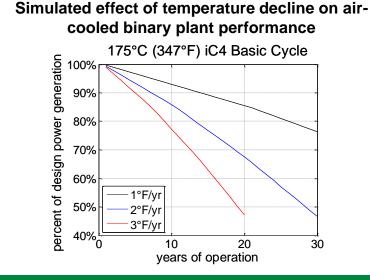
Geothermal Technologies Office 2015 Peer Review

Energy Efficiency & Renewable Energy


Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants


Project Officer: Joshua Mengers Total Project Funding: \$1200K May 12, 2015

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Daniel Wendt (INL) and Craig Turchi (NREL) Low Temperature **Motivation**: Not uncommon for geothermal power plants to experience declines in resource productivity (temperature and/or flow rate)

- Caused by number of reasons including reservoir cooling, production fluid loss, and injection strategy (well location)
- As resource productivity decreases from the power plant design point the detrimental effect on the plant performance is compounded by decreasing plant efficiency
 - Lost revenue from reduced power sales
 - Penalties for not meeting contractual levels of output in PPA
- Cost and risk associated with drilling makeup wells

Objective: Examine the viability of using a solar-thermal source to augment the energy input to a geothermal power plant

- Examine ways to mitigate risk associated with the uncertainty in [future] geothermal production capacity by using solar-thermal heat to offset any lack of geothermal resource productivity
 - Lower risk alternative to drilling new production wells
 - Restore geothermal fluid temperature to design value
 - Lower risk option versus drilling new production wells
- Explore synergistic integration of geothermal and solar-thermal heat sources
 - Increase power generation during hotter periods of day (high demand)
 - Reduce LCOE [either through reducing project development financing costs or by increasing output (per unit cost) of power plants]
 - Take advantage of recent advances in solar thermal collector technology

Technical Approach:

- Evaluate geothermal/solar-thermal hybrid plant performance relative to stand-alone power plants over representative time periods and operating scenarios
 - Performance or economics have to be superior to stand-alone plants for the concept to have merit in a greenfield application
 - A retrofit hybrid plant is examined to overcome other technical limitations (such as degradation in the geothermal resource and inability to drill additional wells)
- Hybrid plant performance simulated using SAM solar array and Aspen Plus power plant models validated with data from operating hybrid plant

Key Issues:

- Capital cost of solar hardware remains an impediment to greater deployment – quantify conditions where addition of solar heat results in positive NPV
- High temperature but transient nature of solar heat poses challenges for integration with geothermal heat source - define hybrid plant designs with performance and/or economics superior to two separate, stand-alone plants

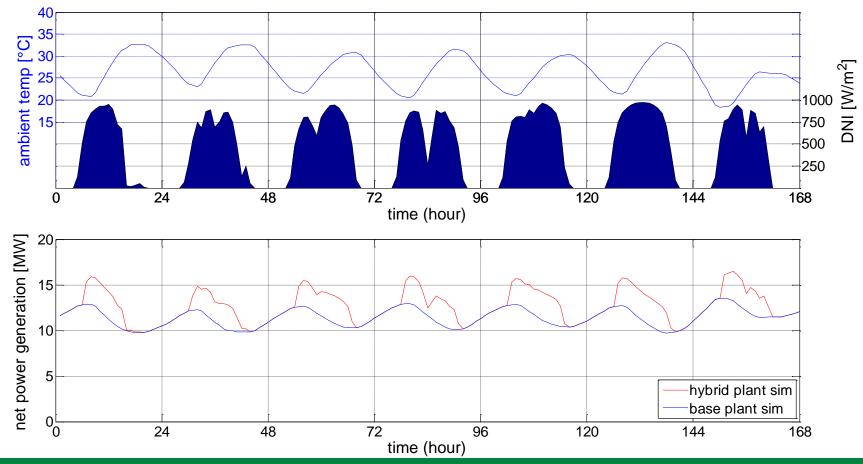
Scientific/Technical Approach

Project Execution

- Joint AOP project
 - NREL provides expertise on solar collector selection and models the performance of solar hardware
 - INL simulates the performance of geothermal power plants including designs that integrate solar energy inputs from NREL's solar performance models
- Industrial collaboration
 - Enel Green Power, NREL, and INL signed CRADA on August 1, 2014
 - Goals of optimizing performance at EGP Stillwater Hybrid Plant
 - Exploring next-generation hybrid plant design concepts
 - CRADA opportunity necessitated changes to the original task plan

FY14 Accomplishments

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Technical evaluation of current CSP concentrator designs to identify the economic optimum for hybrid geo-solar power plants (NREL)		12/20/2013
Identify retrofit hybrid plant configuration and scenario capable of reducing LCOE by target of 5% (INL)		1/31/2014
Identify greenfield hybrid plant configuration and scenario capable of reducing LCOE by target of 5% (INL)		6/30/2014
Final report that identifies economic feasibility for different resource conditions that justifies the use of hybrid geo-solar technology	Sign and begin Enel / INL / NREL CRADA. Identified necessary data requirements for Stillwater plant simulation.	8/11/2014
	Present geo-solar hybrid analysis at the Geothermal Resources Council 2014 Annual Meeting. Submit presentation slides and papers covering the NREL (feedwater heating) and INL (binary cycle) analyses.	9/30/2014

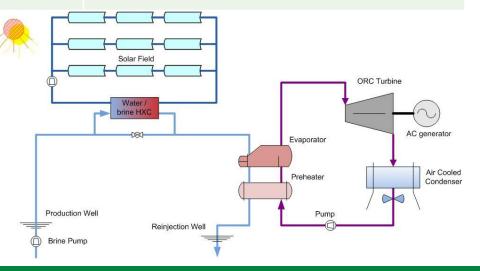

FY15 Accomplishments to date

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Simulation results of the Stillwater power plant before and after solar-thermal integration transmitted electronically in tabular or graphical form. (INL/NREL)		12/23/2014
As-built optical efficiency of solar field at Stillwater hybrid plant with recommendations for field adjustments. (NREL)		12/31/2014
Parabolic trough solar-thermal output model decoupled from SAM power block assumptions; performance comparison with Stillwater solar field data. (NREL)		3/31/2015

ENERGY Energy Efficiency & Renewable Energy

Sample Base and Hybrid Plant Simulation Results - Reno, TMY week 26 (SAM data)

- Design: Recuperated iC4 geothermal plant, 175°C production fluid
- Actual: 15°C T decrease; 20% flow decrease; ~28K m² SCA aperture retrofit



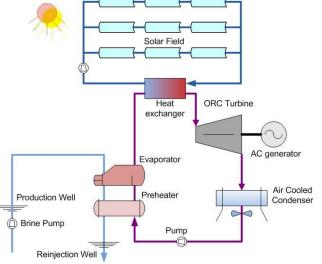
Retrofit Design:

Solar preheating of geothermal production fluid

Benefits	Limitations	
Hybrid plant performance less sensitive to high-ambient temperature or geothermal resource degradation	Low-cost solar field (\$300/m ² installed) and imposition of PPA penalties required for viable economics	
Decrease PPA penalties for low power delivery		
Wholesale electricity price reduction up to 6% depending on assumed plant configuration		
Elevible celer error installation celevie		

Flexible solar array installation schedule

Reference: D. Wendt, G. Mines, T. Williams, C. Turchi, G. Zhu and S. Jenne, "Draft report to DOE confirming potential for up to 5% reduction in LCOE from hybrid configuration," Milestone Report Submitted to DOE Geothermal Technologies Office January 2014.

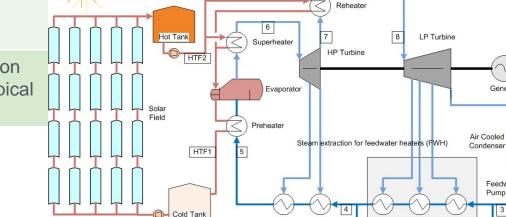

Greenfield Design:

Solar heating of ORC working fluid

Benefits	Limitations	
Hybrid plant performance less sensitive to high-ambient temperature or geothermal resource degradation	Low-cost solar field (\$360/m ² installed) and imposition of PPA penalties required for viable economics	
Decrease PPA penalties for low power delivery		
Wholesale electricity price reduction up to 5% depending on assumed plant configuration and design conditions	Additional working fluid pumping capacity and heat exchanger result in higher initial plant capital cost	
LCOE reduction greatest with time-of-delivery pricing using SAM default TOD rates		
Elevible color errow installation cohodule		

Flexible solar array installation schedule

Reference: D. Wendt and G. Mines, "Greenfield hybrid plant configuration and scenario capable of reducing LCOE by a target value of 5%," Milestone Report Submitted to DOE Geothermal Technologies Office June 2014.


Greenfield Design:

Geothermal feedwater heating for steam-Rankine solar plant

Benefits	Limitations
2x higher thermal-to-electric conversion efficiency of geothermal energy	Solar availability limits run time of the hybrid plant. Annual generation of hybrid was 2% lower than equivalent stand-alone plants
8.5% greater power output vs. equivalent stand-alone plants	
1.3% lower installed cost than 2 stand-alone plants	
Hybrid plant performance less sensitive to	

high-ambient temperature or geothermal resource degradation Bid price benefit of 2% to 6% depending on

assumed plant availabilities and using typical California time-of-delivery rates

FWH-5

FWH-4

Hot Brine

FWH-3

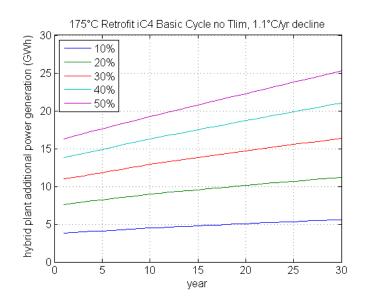
b2

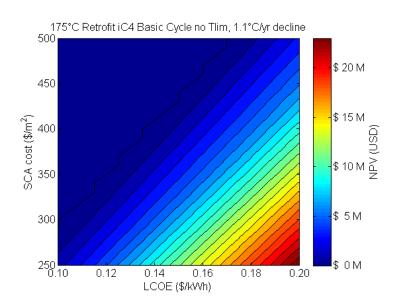
FWH-2 FWH-1 Brine / Feedwater Heater

Reference: Turchi, et al. in GRC Transactions, 2014

Generator

Feedwate Pump

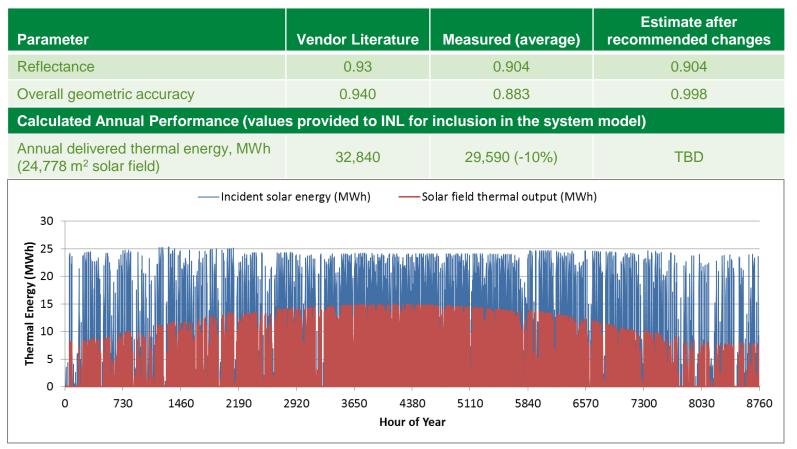

b1



ENERGY Energy Efficiency & Renewable Energy

Solar retrofit of air-cooled geothermal binary power plants NPV analysis (base plant economics not considered)

- Production fluid temperature declines at rate that decreases annual power generation by 50% following 30 years of base plant operation
- NPV calculation (r = 7.0%) includes CapEx, depreciation, revenues
- Analysis does not include project-specific items including taxes, insurance, O&M, royalties, contingencies, Renewable Energy Credits, PPA penalty offset



Reference: Wendt and Mines in GRC Transactions, 2014

ENERGY Energy Efficiency & Renewable Energy

Stillwater Hybrid Plant Solar Field Characterization

- Optical characterization of solar array (mirror reflectance, mirror slope error, and receiver position error)
- Compare predicted solar field performance and measured solar field performance
- Recommended adjustments as appropriate to improve solar field performance

Reference: G. Zhu, et al., "Comprehensive and Accurate Optical Characterization of a Large-Scale Parabolic Trough Collector Field," in preparation for ASME Power & Energy 2015.

Stillwater Hybrid Plant Simulation

- Equipment specifications
- Control strategy
- Historical operating data

Model Validation Results

- Base plant simulation results and operating data compared for 12 separate week-long periods (168 hrs) during calendar year 2013
 - $R^2 \ge 0.95$ for all 12 of the 168 hr intervals analyzed
 - Cumulative power within $\pm 2\%$ for all 12 of the 168 hr intervals analyzed
- Hybrid plant operating data recently made available model validation efforts underway

Future Directions

- Utilize the validated Stillwater hybrid plant model to explore and quantify the potential benefits of different operating strategies and integration schemes at the Stillwater plant as well as alternative sites
- Modeling and analysis of the hybrid flash cycle, feedwater-heating hybrid, and Kalina KCS-34 cycle and summarizing the performance of each of these cycles for selected geothermal resource performance scenarios.

Milestone or Go/No-Go	Status & Expected Completion Date
Model validation reported as statistical R ² analysis of model fit to Stillwater plant data for subsystems (e.g., solar collectors, ORC power block) and full plant (INL/NREL)	Rescheduled to 4/30/2015 to accommodate availability of hybrid plant operating data
Predicted electricity cost as a function of site conditions and project costs (solar resource, geothermal resource, geothermal and solar system costs, power cycle efficiency) at four U.S. sites. Define conditions necessary for economic deployment. (INL/NREL)	6/30/2015
Completion of report that identifies LCOE reductions from geothermal-only baseline configurations and identifies one or more scenarios that lead to LCOE benefits in excess of 5%. Report will include relevant geo/solar hybrid power cycles, plant configurations, performance, and economic feasibility; identifies current technology limitations and future research recommendations. (INL/NREL)	9/30/2015

- Technical evaluation has confirmed the performance benefits associated with geo-solar hybrid plants
- Economic analyses indicate that hybrid geo-solar plants can result in positive NPV and/or reductions in LCOE in assorted scenarios
- EGP Stillwater solar field optical characterization resulted in recommendations that could improve performance; complementary analyses currently being performed for complete retrofit hybrid plant
- Continuing investigation of synergistic integration of geothermal and solar-thermal heat sources as part of overall technology evaluation