

VALUE OF INFORMATION (VOI) ANALYSIS USING FIELD DATA: **Accounting for Multiple Interpretations & Determining New Drilling Locations**

Chevron

Whitney Trainor-Guitton¹, G. Michael Hoversten², Gregg Nordquist³, Robert Mellors¹ & Rindu Grahabhaki Intani³

¹Lawrence Livermore National Laboratory, Livermore, CA, wtrainor@gmail.com

² Chevron Energy Technology Company, San Ramon, CA, ³Chevron Geothermal Power Indonesia, Jakarta, Indonesia

Role of geophysical data in geothermal prospecting

• Darajat is a volcanic geothermal field, with total production capacity of 271 MW [1].

Location of Darajat Field

- **Clay cap =** high electrical conductivity feature in volcanic geothermal settings; can be indicative of geochemical alteration above the resource [2].
- MT data were collected to interpret the extension of the clay cap beyond the first development area and inverted to an electrical conductivity model[1].
- The conductivity model is used to determine relationships between the conductance & the

Project Questions

- How well does geophysical data improve the outcome of our geothermal prospecting decisions?
- How much is this information worth (\$)?
- How can we quantify the "past performance" of MT data to predict geothermal

≤ 750m

802000

overlying steam flow rates.

Conductivity (σ) \geq 0.12 S/m

production?

Average production over one year for 27 different wells

Value of Information

Does the information improve (on average) our chances of drilling economic wells?

	Expected Outcome with Current Information/ Uncertainty Vprior Value of Im Informa	Expected Outcome with "Sample" Information V _{II} operfect tion	Expected Outcome with Perfect Informatio V _{PI} H Ex ormation	Expected Outcome vith Perfect nformation V_{Pl} Higher Expected Gains	
Pr(e	$\theta = \theta_i$	Prior prok flow cate	babilities of gories (θ)	7 steam	
Steam flow category	Steam Flow Rate (kg/s)	Nominal value gain/loss	a) Prior from steam flow data	b) Alternate prior	
θ _{i=7}	30 < θ _i	\$ 700K	26%	10%	
θ _{i=6}	25 ≤ θ _i ≤ 30	\$ 300K	15%	10%	
θ _{i=5}	$20 \le \theta_i \le 25$	\$ 125K	15%	10%	
$\boldsymbol{\theta}_{i=4}$	$15 \le \theta_i \le 20$	\$ 40K	7%	10%	
$\theta_{i=3}$	$10 \le \theta_i \le 15$	\$ 0	11%	10%	
θ _{i=2}	5 ≤ θ _i ≤10	\$ -200K	11%	10%	
$\boldsymbol{\theta}_{i=1}$	θ _i ≤ 5	\$ -500K	15%	40%	

Deduce trends between conductance (g) & steam flow (θ)

800000 801000 Eosting (meters)

1000 -

- 0.2

- Conductivity (σ) 1. Define 2 clay caps with 2 conductivity cutoffs (thresholds):
 - ≥ 0.12 S/m
 - Delineates thinner cap
 - ≥ 0.10 S/m

te

• Delineates thicker cap

```
Clay cap #1 (\sigma \ge 0.12 S/m)
```

-	⊖>30		3 wells, 744 conductance measurements
	25<⊝<30	I	1 well, 22 conductance measurements
こっ	20<Θ<25	• • • • • • • • • • • • • • • • • • •	2 wells, 232 conductance measurements
、	15<Θ<20	• H • •	1 well, 10 conductance measurements
	10<⊖<15		2 well, 318 conductance measurements
	5<⊝<10	- •• • • · · · · · · · 2 w	vell. 248 conductance measurements

- 750m as cutoff distance
- Represents lower quartile (Q1) of distances between midpoint of feed zones and conductance voxels

Clay Cap #2 ($\sigma \ge 0.10$ S/m)

		г		· · · · · · · · · · · · · · · · · · ·
in general,		0. 20		
		⊌>30⊦	·····	3 wells, 653 conductance measurements
higher	Ś			
		25<Θ<30	F	1 well, 22 conductance measurements
steam flow				
is associated		20<Θ<25	«[] · [· [· · · · · · · · · · · · · · ·	2 wells, 205 conductance measurements
with smaller	>	15-0-20-	л.	1 well, 5 conductance measurements
with smaller	\geq	13/0/20	1.1.1	
conductonco	<u> </u>			
conductance	`	10<Θ<15	• • • • • • • • • • • • • • • • • • •	2 well, 217 conductance measurements
(e.g. thinner				
		5<⊖<10	h	2 well, 192 conductance measurements
clay cap) [3]	L L			
	i Ó	0.5		4 wells, 136 conductance measurements

Determine next drilling campaign Quantify probabilistic relationships between g and θ

REFERENCES

- [1] Rejeki, S., Rohrs, D., Nordquist, G., & Fitriyanto, A. (2010). Geologic Conceptual Model Update of the Darajat Geothermal Field, Indonesia. In Proceedings World Geothermal Congress 2010 (pp. 25-29)
- [2] Cumming, W. (2009). Geothermal resource conceptual models using surface exploration data. In PROCEEDINGS, 34th Workshop on Geothermal Reservoir Engineering (p. SGP–TR–187). Stanford, California
- [3] Ussher, G., Harvey, C., Johnstone, R., Anderson, E., & Zealand, N. (2000). Understanding the resistivities observed in geothermal systems. In Proceedings World Geothermal Congress (pp. 1915–1920).
- [4] Trainor-Guitton, W. J., Hoversten, G. M., Ramirez, A., Roberts, J., Juliusson, E., Key, K., & Mellors, R. (2014). The value of spatial information of for determining well placement: a geothermal example. Geophysics, 79(5).

nperfect $\Delta j = 1$ ($\Im J / \Delta l = 1 [1 (\Im J / a ()))))))))))))))))))))))))))))))$				
	Clay Cap	0.12	0.10	
Prior	defined by	Siemens/	Siemens/	
Probability:	threshold:	m	m	
A	V _{prior}	\$151,550	\$151,550	
According	V _{imperfect}	\$162,580	\$171,500	
lu uala	VOI _{imperfect}	\$11,030	\$19,950	
	V _{prior}	\$0	\$0	
Alternate	V _{imperfect}	\$48 <i>,</i> 775	\$37,090	
μισι	VOI _{imperfect}	\$48,775	\$37,090	

when $Pr(\Theta > 30)$ is higher: the conductance for this category has less overlap with others • This reverses for alternate

prior with higher $Pr(\Theta < 5)$./

LLNL-POST-669639

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.