Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

DOE Cooperative Agreement No. DE-EE0005758 RTI International, Duke University, and Veolia Water Solutions & Technologies North America, Inc. Project Period: September 1, 2012 to November 30, 2015

> Lora Toy (Principal Investigator) RTI International Research Triangle Park, NC 27709

U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

Current State/Challenges of Industrial Water Use

Heavy industrial water utilization footprint

Freshwater Withdrawals in the U.S. by Sector (2005)

- ~5.2 quadrillion BTU* (2010) consumed for water services in U.S. industrial sector
- Minimal to no water reuse
- Wide spectrum of contaminants in industrial wastewaters, making them difficult to treat
- High energy intensity, pretreatment needs, and water-treatment costs
- Unsustainability (limited resources, regulatory pressures)
 - * Ref.: Sanders and Weber, Environ. Res. Lett., 7, 1-11 (2012)

Water reuse and waste heat can reduce freshwater withdrawal and energy consumption.

Project Objective

- Develop and demonstrate advanced hybrid industrial water treatment system that will...
 - Cost-effectively enable at least 50% water reuse efficiency near term toward Zero-Liquid Discharge (ZLD)
 - Improve energy efficiency of industrial wastewater treatment by at least 50%, relative to current technology

Technical Approach

Innovative Technical Approach

- <u>MD (thermally driven process)</u>: Regeneration of high-osmotic FO draw solution
- Low-pressure operation
 - Reduced energy requirements
- High water recovery/reuse potential
- Broad applicability to different industries

Technical Approach

Transition and Deployment

Stakeholders/End Users in This Technology Development

Broad applicability throughout industrial sectors...

Environmental protection

Transition and Deployment Roadmap

	Previous Work	Current Project: RTI / DOI	Future Development/Sustainment		
Yr	→ 2011	2012-14	2015-2016	2017-19	2020+
TRL	2-3	3-5	5-6	7-8	9
Proc /	of-of-Concept Feasibility	Laboratory Validation ✓ Membrane screening &	 <u>Relevant Environment Testing</u> Installation & commissioning of 	Membrane / module manufacturing	Deploy- ment
		 evaluation ✓ Process development, modeling, & integration ✓ Preliminary techno-economic assessment ✓ Bench integrated system (25-gpd) testing with real wastewaters ✓ Updated techno- economic analysis 	 field prototype <u>Field prototype (500-gpd)</u> <u>demonstration</u> at industrial site treating slipstream of real effluent Final techno-economic assessment 	Pre-commercial demonstration	
				Ongoing membrane, mo process refinements market relevance and	odule, and to increase d economic
				Competitiveness Potential technology owners: Veolia (JDA / option agreement in place)	
				A A	

Laboratory water test-bed systems

Veolia produced water treatment plant

Bench, integrated FO/MD system (25-gpd)

Measure of Success

Benefits Throughout U.S. Manufacturing Supply Chain

- Enabling cost-effective water reuse toward ZLD
 - Up to 94% reduction in wastewater discharge volumes*
- More than doubling of energy efficiency of industrial water treatment

- 60% to >90% lower electricity costs*
- Up to 40% reduction in water treatment costs of briny (high-TDS) wastewaters*
- Carbon emissions reduction (60 to >90%*)
- Broad applicability to different industries
- * Based on project's updated techno-economic analysis and relative to Reverse Osmosis [RO]

Overall Impacts

- Revitalization and strengthening of the U. S. manufacturing base for existing and emerging industries
 - Domestic job creation
 - Increased U.S. manufacturing economic competitiveness & sustainability
 - Support of President's "Plan To Win the Future by Investing in Advanced Manufacturing Technologies"
- U. S. clean energy and water technology leadership

Project Management & Budget

 Project Duration*: ~45 mos. (3.75 yrs.) (anticipated)

Total Project Budget				
DOE Investment	\$4,800,000 [80%]			
Cost Share	\$1,200,000 [20%]			
Project Total	\$6,000,000			

Project Task Structure (Simplified)

- 1 MD membrane development
- 2 FO membrane process evaluation and optimization
- 3 Bench, integrated FO/MD System performance testing
- 4 Hybrid process model development and validation
- 5 Field demonstration of prototype, integrated system
- 6 Hybrid process design integration/Techno-economic analysis

* Project currently in continuation application review phase

	Status	Milestones		
	~	Q3 – Successful hydrophobic surface modification of ceramic MD membranes		
BP1	✓	Q5 – Bench-scale, integrated FO/MD system design		
(15 mos.)	✓	 Optimized FO membrane process with FO draw solution formulation(s) [Go/No-Go] 		
	✓	 Preliminary techno-economic and environmental analysis [Go/No-Go] 		
	✓	Q6 – Preliminary draft engineering design package for prototype, integrated FO/MD unit		
	✓	Q7 - Selection of at least one MD membrane having >95% rejection of dissolved solids in complex wastewater feeds [Go/No-Go]		
BP2	✓	Q8 – Fully operational bench, integrated FO/MD test system (25-gpd) [Go/No-Go]		
(10-19 1105.)	✓	Q9 – Development of hierarchal, omniphobic surface for MD membranes		
	~	 Hybrid FO/MD process model validation [Go/No-Go] 		
	✓	Q10 - Selection of host test site [Go/No-Go]		
	✓	 Final engineering design package for field prototype, integrated FO/MD unit 		
		Q13 – Field prototype, integrated system (500-gpd) installation/ commissioning		
(~12 mos.)		Q14 – Hybrid FO/MD process modeling tool fully validated		
		Q15 – Final techno-economic and environmental analysis		

Results and Accomplishments

Project Status / Accomplishments Since May 2014 Peer Review

- Currently in Month 33 of project (end of Budget Period 2)
- All Budget Period 2 milestones achieved
- Bench, integrated FO/MD operation (synthetic & real wastewater feeds), demonstrating continuous FO draw-solution regeneration by MD
- Concentration of feeds up to very high TDS (>260,000 ppm) achieved
- Hybrid FO/MD model refinement and validation
- Updated techno-economic analysis showing advantage of hybrid FO/MD technology is the treatment of briny (high-TDS) wastewaters
- Oil & gas production facility selected as host field-test site

<u>Ability of FO/MD Technology To Concentrate</u> <u>To Very High TDS Levels</u>

Initial TDS of Feed	Final TDS of Concentrated Feed	Volume Reduction Factor (feed-side)	Water Recovery
78,000 ppm*	262,750 ppm	3.3	70%
57,620 ppm*	202,250 ppm	4.1	72%
12,960 ppm**	60,350 ppm	5.1	78.5%

* Synthetic feed with NaCl as TDS; ** Real RO brine from oil production facility

Planned Future Work

- Demonstration of field integrated prototype at industrial site
- Final techno-economic and environmental analyses

