H2 Refuel H-Prize Technical Data Collection Requirements

Energy Efficiency & Renewable Energy

Katie Randolph, PhD Sarah Studer, PhD

U.S. Department of Energy Fuel Cell Technologies Office

Question and Answer

 Please type your question into the question box

hydrogenandfuelcells.energy.gov

Year

One

Year

Two

i/refuel

U.S. Department of Energy

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 3

Two-year competition opened October 29, 2014

Challenging America's innovators to develop on-site systems to generate and dispense hydrogen to fuel vehicles at homes, community centers or small businesses.

The Best Entry Wins \$1 Million!

Teams form, develop plans, and submit designs by October 29, 2015.

Finalists are announced in December 2015, and will prepare their entries, and start testing in June 2016. Open houses will let the public get a peek!

Beyond The competition closes October 31, 2016. Technical and cost data will be analyzed to select the \$1 million winner.

Want to compete? Interested in seeing what teams are doing? Looking to join a team? For more information, to sign up for updates, or register, visit http://hydrogenprize.org/

Timeline

The Competition: The Goal:

Deploy an on-site hydrogen generation system that uses electricity or natural gas and can be used in homes, community centers, retail sites or similar locations to fuel hydrogen vehicles. The best entry, based on technical and cost criteria, wins \$1 million!

2014	October	 Competition opens: Contestants have one year to find partners, design a system, test components, find a place to install the system, and register for the prize
015	October	 Contestants submit data and designs, and a team of independent judges selects finalists to enter the testing phase
5	December	 Finalists are announced and they have 7 months to build, install, and prepare systems for testing
2016	June- October	 Remote and on-site testing data collection for the technical criteria Independent financial experts evaluate the cost criteria Open house to let the public get a peek at the entries!
	December	Data analyzed and H-Prize winner announced

For more information and to sign up, visit http://hydrogenprize.org/

- Entries must meet the basic criteria (e.g., safety requirements), and will be scored based on both Financial and Technical criteria
- Because some of the criteria are considered more critical, the criteria have different weights adding up to a total of 50 points

				Installed system cost		Direct user cost per kg
Criteria	Weight			(Includes o	capital costs)	(Does not include capital costs)
Dispensing pressure	3	ria	Score	Home	Community	Home & Community
Dispensing time	1	ite	1	\$25k/kg or less	\$15k/kg or less	\$20 or less
Standard fills per day	1	cr	2	\$20k/kg or less	\$12.5k/kg or less	\$17 or less
Tested availability	2	st	3	\$15k/kg or less	\$10k/kg or less	\$14 or less
Installed system cost	2	ပိ	4	\$10k/kg or less	\$7.5k/kg or less	\$11 or less
Direct user cost per kg	1		5	\$5k/kg or less	\$5k/kg or less	\$8 or less

a		Dispensing pressure	Dispen	Dispensing time		d fills per day	Tested availability
eri	Score	Home & Community	Home	Community	Home	Community	Home & Community
Crit	1	350 bar or higher	10 hours or less	60 minutes or less	1 or more	5 or more	80% or higher
al c	2	400 bar or higher	8 hours or less	30 minutes or less	2 or more	10 or more	85% or higher
<u>ič</u>	3	500 bar or higher	5 hours or less	15 minutes or less	3 or more	20 or more	90% or higher
hn	4	600 bar or higher	2 hours or less	10 minutes or less	4 or more	40 or more	95% or higher
ec	5	700 bar or higher	30 minutes or	3 minutes or less	5 or more	50 or more	98% or higher
		(ultimate target)	less				

Website

http://www.hydrogenprize.org

Joining a team

http://www.hydrogenprize.org/how-to-compete/join-a-team/

Home	News	About the H-Prize	For Competitors	Contestants	Media / Contact Us	Mailing List
Get li	nvolve	d				INTERESTED IN JOINING A TEAM?

If you are interested in joining a team, you can fill out the form to the right. Submissions for people or groups looking to join a team appear below.

Please note that neither the Hydrogen Education Foundation (HEF) nor the U.S. Department of Energy (DOE) endorses any member of the list, or provides guarantees about their suitability. This information is only provided as a resource to facilitate potential contestants to find other possible team members and resources. This website is operated and maintained by the Hydrogen Education Foundation (HEF) under a cooperative agreement with DOE. It is not a government website. DOE's Privacy Policy does not apply to HEF.

If you want to keep up on any news and updates, you can sign up for the mailing list.

FULL-	SPECIALTY	EMAIL
NAME		
Milan Kru-	We can build one of our three ultra-efficient rotary compressor/pump concepts to cost effec-	memilan@yahoo
pa	tively compress hydrogen to any pressure.	com
	vve are developing the designs for use as detonation cycle engines.	
Lane Shar-	Intermittent energy (solar, wind, solar-thermal) and electrolysis for the production of hydro-	lane@solanaener-

INTERESTED IN JOINING A TEAM?

Fill out the form below to let others know your areas of expertise. Submissions will be listed in a table to the left. Full Name (required)

k	
Email (required)	

Flone number (required)	Phone	number	(required)
-------------------------	-------	--------	-----------	---

Affiliation

Website

H₂ Refuel H-Prize

Technical Data Collection Requirements

Chris Ainscough, P.E.

May 14, 2015

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Judging Criteria

Judging Criteria

- Official Guidelines and Data Requirements
 - <u>http://www.hydrogenprize.org/how-to-</u> <u>compete/rules-and-guidelines/</u>
 - <u>http://www.hydrogenprize.org/wp-</u>
 <u>content/uploads/2015-03-26-Data-requirements-</u>
 <u>v5.pdf</u>
- The official guidelines and data requirements govern in any apparent or actual contradiction or omission in the writings or spoken words of this presentation, express or implied.

Minimum/Maximum Criteria

Minimum/Maximum Criteria Table

Criteria	Home	Community	
Minimum dispensing pressure	35	50 bar	
Maximum dispensing time (standard fill)	10 hours	60 minutes	
Min. hydrogen dispensed per day	1 kg	5 kg	
Hydrogen purity	Hydrogen purityMeets SAE J2719 (Hydrogen Fuel Quality for I		
	Cell Vehicles)		
Fill method	Compliant with relevant codes (for automobiles,		
	SAE J2601 Fueling I	Protocols for Light Duty	
	Gaseous Hydrogen Sur	face Vehicles) and ensures	
	that delivered hydrogen does not exceed the		
	pressure and temper	ature limits of the vehicle	
	storage tank.		
Safety	Meets relevant safety	y codes and standards for	
	installation i	n target location	

- Dispensing Pressure
- Dispensing Time
- Number of Standard Fills (1-kg) per day
- Tested Availability
- Total installed system cost
- Direct cost per kg

NOT COVERED IN THIS WEBINAR. WILL BE COVERED IN A FUTURE WEBINAR

Dispensing Pressure				
Score	Home Community			
1	350 bar or higher			
2	400 bar or higher			
3	500 bar or higher			
4	600 bar or higher			
5	700 bar or hig	gher (ultimate goal)		

Dispensing time				
Score	Home	Community		
1	10 hours/kg or less	60 minutes/kg or less		
2	8 hours/kg or less	30 minutes/kg or less		
3	5 hours/kg or less	15 minutes/kg or less		
4	2 hours/kg or less	10 minutes/kg or less		
5	30 minutes/ kg or less	3 minutes/kg or less		

Number of standard fills per day				
Score	Home	Community		
1	1 or more	5 or more		
2	2 or more	10 or more		
3	3 or more	20 or more		
4	4 or more	40 or more		
5	5 or more	50 or more		

Tested Availability				
Score	Home	Community		
1	80%	or higher		
2	85% or higher			
3	90%	or higher		
4	95%	or higher		
5	98%	or higher		

- Availability will be tested over a period of two to three months, during which time system usage will need to be at least 50% of the planned capacity per week.
- Any time spent on repairs or non-routine maintenance during the testing period will count as non-available, even if compensated for (e.g., repairs done during scheduled down-time, or using stored hydrogen).

Tested Availability Defined

A = (168 – Tr – Td) / 168 (for weekly calculations, 24hours/day X 7 days=168 hours) Tr = repair time (time (h) between when a repair or non-planned

maintenance intervention is initiated and the system is returned to operational status).

Td = delay time (time (h) between when a failure occurs [system can no longer fill or generate hydrogen] and a repair is initiated).

Finalists will be required to collect detailed maintenance logs. A template will be provided at a future date.

Scoring

Criteria Category	Score multiplier
Dispensing pressure	3
Dispensing time	1
Standard fills per day	1
Tested Availability	2
System installation cost	2
Direct user cost per kg	1

A bonus score of up to 3 points will be awarded for integrated systems in order to offset the additional

costs associated with adding heat and/or power, based on how much heat or power is provided.

Bonus points								
Points	Heat or power supplied							
1	Supply at least 35 gallons of hot water per day							
1	Supply at least 25,000 BTU/hr of space heating							
1	Supply at least 10 kWh electricity per day							

Scoring Examples

Example A: Makes all the lowest scores

Criteria Category	Result	Category Score	Score multiplier	Total scores
Dispensing pressure	360 bar	1	3	3
Dispensing time	8 hours	1	1	1
Standard fills per day	1	1	1	1
Tested Availability	81%	1	2	2
System installation cost	\$23k/kg	1	2	2
Direct user cost per kg	\$19/kg	1	1	1
Bonus categories	None	0	0	0
Total				10

Example B: Mixture of scoring levels

Criteria Category	Result	Category Score	Score multiplier	Total scores
Dispensing pressure	475 bar	2	3	6
Dispensing time	3 hours	3	1	3
Standard fills per day	3	3	1	3
Tested Availability	88%	2	2	4
System installation cost	\$18k/kg	2	2	4
Direct user cost per kg	\$11/kg	4	1	4
Bonus categories	Supplies hot water	1		1
Total				25

Data Collection Details

 We collect data to allow for accurate assignment of points to finalist contestants competing in the H-Prize competition, ensuring fair judging of all systems.

How We Collect Data

- Finalists will be required to have a data collection system (DCS), installed by NREL.
- Data will be collected primarily through the use of a Modbus TCP/IP interface.
- Finalists must provide a Programmable Logic
 Controller (PLC) or similar controller configured as a Modbus server.
- DCS will be configured as a client.

How Much Data We Collect

- The DCS must collect a minimum of 60 days worth of operational data.
- Operation need not be 60 continuous days.

- The sensor package provided by the contestant must, at its expense, include sensors in two broad categories:
- Isolated signal connects electronically ONLY to the DCS.
- Non-Isolated connected to contestant's system and provides data to DCS over Modbus.

Example

DCS Facilities requirements

- Safe location protected from weather.
- 120-VAC power ~50-W (regular 15-amp circuit).
- Ethernet internet connectivity OR
- Access to a GSM cellular data network of sufficient strength to retrieve data.

Traceability

- The contestant must supply NIST¹ traceable certificates of calibration for all sensors relied upon by the DCS.
- All sensors must remain within their scheduled calibration window, based on manufacturer's recommendations, while the DCS is collecting data.

1. http://www.nist.gov/calibrations/

Site visits

- The contestants shall arrange for at least one site visit by NREL personnel (travel at NREL/DOE's expense) to install and verify operation of the DCS and the candidate system through at least one test fill.
- DCS installation must be completed by 7/31/16.
 Earlier is OK and encouraged.
- We will not book travel based on anticipated system operation dates. It must be actually operating before the visit is scheduled.

Site visits

- If the candidate system is not operational during the site visit, such that the DCS cannot be installed and/or its operation, along with operation of the candidate system, cannot be verified, additional site visits may be required, at the contestant's expense.
- Alternately, the contestant may withdraw from the competition.

Purity

- The contestant must contract, at its expense, with an independent chemistry lab capable of verifying compliance with the SAE J2719¹ purity standard.
- The lab must collect samples according to ASTM D7606².
- Samples shall only be in the custody of the contracted laboratory personnel and not handled by the contestants.
- The lab must mail a notarized copy of the purity results directly to NREL. The results may not come via the contestant.

Hydrogen & Fuel Cell Systems Eng. Group: H-Prize, ESIF 302 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401-3305

- 1. SAE International, *Hydrogen Fuel Quality for Fuel Cell Vehicles*, J2719, 2011, <u>http://standards.sae.org/j2719_201109/</u>
- 2. ASTM International, *Standard Practice for Sampling of High Pressure Hydrogen and Related Fuel Cell Feed Gases*, D7606, 2011, <u>http://www.astm.org/Standards/D7606.htm</u>

Whose data is it anyway?

- The DCS remains the property of the U.S. Department of Energy and must be disconnected by the finalist contestant, and returned to NREL at the end of the logging period, at the contestant's expense.
- Data collected by the DCS remains the property of the U.S. Department of Energy, and will be stored, analyzed, and archived at the National Fuel Cell Technology Evaluation Center at NREL in accordance with the then current revision of its security procedures.
- Contestants will receive a copy of the results provided to the judges for their system. These results will not be made public, unless mutually agreed to after the competition.
- Final results for scoring criteria will be made public.

Data Integrity

Finalist contestants are forbidden from adulterating or falsifying, concealing, or covering up by any trick, scheme, or device a material fact; or making any materially false, fictitious or fraudulent statement or representation; or making or using any false writing or document regarding the candidate system operation. This includes providing adulterated or false signals to DCS with the aim of gaining an advantage in the competition. The DCS shall not be opened or tampered with in any way, except as expressly directed in writing by NREL staff. Failure to comply with these requirements will result in immediate disqualification from the H-Prize competition and may constitute a false statement under 18 U.S.C. § 1001, which can carry a penalty of up to five years in prison.

H2 Refuel Testing Data Requirements

Performance Metric	System Type	Signal Range	Units	Physical Measurement	Logging Period (s)	Location	Minimum Accuracy	Signal Type	Scaling for Modbus Signals	Modibus Data Type	Modibus Data Location	Preferred Modbus Address*	
					Required D	ata Collection							
	Due to th	e potential variation	n among possibl	e system configurations, add	itional mea	surements, at the candidat	e team's expense, m	hay be required	to measure H-Priz	e criteria			
Time		n/a	υτς	Real time, 24-hour clock, UTC, reported as Epoch time (elapsed seconds since midnight Jan 1, 1970)	-	n/a	precision to seconds	Modbus TCP/IP	n/a	32-bit unsigned int, straight endian	Holding Register	4x00015- 4x00016	
Dispensing Pressure	A	125% of system design maximum dispensing pressure	bar	Pressure		As close to the dispensing nozzle as practical	0.25% of span	4-20mA					
Dispensing Time		Binary	on/off	Open/closed dry contacts (one of each) on dispenser valve			n/a	Dry contacts	-				
	Ноте	1	kg dispensed**	Mass total for each fill	30 sec		10% of fill amount		kg*1000		4x00001		
		0.03 to 1.5	grams/min**	Mass flow rate averaged over 30 seconds		As appropriate		6 of max flow rate 76 of fill amount 6 of max flow rate 6 of max flow rate 6 of max flow rate			4x00002		
Hydrogen Dispensed	Community	1	kg dispensed**	Mass total for each fill, at least 5 fills per day			10% of fill amount		kg*1000	1000 nin*1000 16-bit unsigned int Registe	t Register	4x00003 4x00004	
		15 to 350	grams/min**	Mass flow rate averaged over 30 seconds			10% of max flow rate		grams/min*1000			4x00005	
Ambient Temperature		-40 to 50	.	Ambient temperature		Shaded area out of direct sunlight/precipitation.	11.1.6		transmit as Kalvin			4x00006	
Hydrogen Gas Temperature		-40 to 80	L	Gas temperature		As close to the dispensing nozzle as practical	+/-1 °C See RTD Spec	+/-1 C See RTD Sp	See RTD Spec				4x00007
Availability	All	Whether the system is up and ready to fill.	Yes/No	Binary Yes/No		n/a	n/a	Modbus TCP/IP	n/a	1-bit	Status Coil	1x00000	
Volume of the Tank Being Filled		as appropriate	L	Water filled volume of tank being filled for each fill	manual	n/a	in accordance with tank manufacturer's manufacturing tolerances	manual collection					

 Because Modbus slaves may differ in their address space allocation, other addresses are acceptable if comminucated in writing in the design package. However, if possible please use the specified addresses to reduce data transmission issues.

** Both values are required, but one may be calculated from a physical sensor measuring the other

RTD Spec: RTD Pt (α = 0.00385, 0.00392), Ni (α = 0.005001), Cu (α = 0.0039) 10 Ohm to 10 kOhm. 2.5mA Max

H2 Refuel Testing Data Requirements

Performance Metric	System Type	Signal Range	Units	Physical Measurement	Logging Period (s)	Location	Minimum Accuracy	Signal Type	Scaling for Modbus Signals	Modbus Data Type	Modibus Data Location	Preferred Modbus Address*		
	Optional Bonus Points													
	Due to the potential variation among possible system configurations, additional measurements, at the candidate team's expense, may be required to measure H-Prize criteria													
		35	gallons per day	Water volume	At point of delivery to the thermal load			gal/day*10	4 c. Lin	Holding	4x00008			
Hot Water		1.5	gallons/hour	Water flow rate gph averaged over 30 seconds		At point of delivery to the thermal load	+/- 1% of reading	Moadus TCP/IP	gal/hour*100	16-bit unsigned int	Register	4x00009		
	Ontional	1 to 250	•c	Water Temperature			* nds	At point of delivery to the thermal load	+/-1*C	See RTD Spec				
Space Heating		25,000	SCFH	Air flowrate SCFH*** averaged over 30 seconds				wrate SCFH*** I over 30 seconds		+/- 1% of reading	Modbus TCP/IP	no scaling, transmit directly	16-bit unsigned int	Holding Register
opaso noa6		1 to 250	•c	Air Temperature			+/-1*C	See RTD Spec						
	- F		Hz	Power Frequency					Hz*10			4x00011		
			n/a	Power factor				Modbus TCD/ID	power factor *100	16-bit unsigned int	Holding	4x00012		
Electricity		10 kWh/day V (RMS) Line-line Voltage (RMS) Line-neutral voltage (RMS) A (RMS) Current (RMS)	Line-line Voltage (RMS)		At the point of delivery to the electrical load	+/- 1% of reading	1% of reading	Voltage (RMS) * 100	TO-DIC GUSIBLEG INC	Register	4x00013			
			T (MM3)	Line-neutral voltage (RMS)					Voltage (RMS) * 100			4x00014		
						4-20 mA								

ſ	* Because Modbus slaves may differ in their address space allocation, other addresses are acceptable if comminucated in writing in the design package. However
I	if possible please use the specified addresses to reduce data transmission issues.
	*** SCFH = standard cubic feet per hour of dry air at 20°C and 1 atm
ſ	RTD Spec: RTD Pt { α = 0.00385, 0.00392}, Ni { α = 0.005001), Cu { α = 0.0039} 10 Ohm to 10 kOhm. 2.5mA Max

Performance Metric	System Type	Signal Range	Units	Physical Measurement	Logging Period (s)	Location
					Required D	ata Collection
	Due to th	e potential variation	n among possibl	e system configurations, add	litional meas	urements, at the candidate
Time		n/a	UTC	Real time, 24-hour clock, UTC, reported as Epoch time (elapsed seconds since midnight Jan 1, 1970)	30s	n/a
Dispensing Pressure	All	125% of system design maximum dispensing pressure	bar	Pressure		As close to the dispensing nozzle as practical

Minimum Accuracy	Signal Type	Scaling for Modbus Signals	Modbus Data Type	Modbus Data Location	Preferred Modbus Address*
te team's expense, m	nay be required	to measure H-Prize	e criteria		
precision to seconds	Modbus TCP/IP	n/a	32-bit unsigned int, straight endian	Holding Register	4x00015- 4x00016
0.25% of span	4-20mA				

Performance Metric	System Type	Signal Range	Units	Physical Measurement	Logging Period (s)	Location
Dispensing Time		Binary	on/off	Open/closed dry contacts (one of each) on dispenser valve		
Hydrogen Dispensed ·	Home	1	kg dispensed**	Mass total for each fill		
		0.03 to 1.5	grams/min**	Mass flow rate averaged over 30 seconds	30 sec	As appropriate
	Community	1	kg dispensed**	Mass total for each fill, at least 5 fills per day		
		15 to 350	grams/min**	Mass flow rate averaged over 30 seconds		

Minimum Accuracy	Signal Type	Scaling for Modbus Signals	Modbus Data Type	Modbus Data Location	Preferred Modbus Address*
n/a	Dry contacts				
10% of fill amount		kg*1000			4x00001
10% of max flow rate		grams/min*10000			4x00002
10% of fill amount	Modbus TCP/IP	kg*1000			4x00003 4x00004
10% of max flow rate		grams/min*1000	16-bit unsigned int	Holding Register	4x00005

Questions

Question and Answer

 Please type your question into the question box.

hydrogenandfuelcells.energy.gov

Other Questions?

Ways to send in questions after this webinar:

- email <u>Hprize@ee.doe.gov</u>
- Submit a question on the H-Prize website FAQ page <u>http://www.hydrogenprize.org/about-the-h-prize/faqs/</u>
- Tweet to @H2Refuel

hydrogenandfuelcells.energy.gov