Scalable Light Module for Low-Cost, High Efficiency LED Luminaires

2015 Building Technologies Office Peer Review

Award #DE-EE0006264

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Paul Fini, paul_fini@cree.com CREE, Inc.

Project Summary

Timeline:

Start date: 8/1/13 Planned end date: 7/31/15

Key Partners:

None external to CREE

Key Milestones:

1. LED efficacy of >150 LPW at 25°C, 35 A/cm², 3000K CCT, >90CRI [Met by 7/31/14 due date]

- 2. Identify two or more viable candidate manufacturing processes [Met by 7/31/14 due date]
- 3. Achieve net Light Module optical efficiency of > 90% [Due 5/15, met ahead of time]

Budget:

Total Federal funds to date: \$1.95MM Total future Federal funds: \$305K CREE Cost Share: **50%**

Project Goal:

Develop a scalable, versatile **Light Module** architecture which enables high luminaire optical and thermal efficiency. This platform will reduce LED count, result in fewer mechanical piece parts, and simplify integration and assembly. The result is **lower cost per lumen** delivered.

Target Market/Audience:

Target Market: high-efficacy, low-cost general illumination with a focus on broad-area luminaires

Energy Efficiency & Renewable Energy **Problem Statement**: despite recent reductions in SSL normalized price (\$/klm), further progress is needed to encourage adoption of this high-efficacy technology.

Target Market and Audience: high-efficacy, low-cost general illumination with a focus on broad-area luminaires. For example, linear fluorescents had **2.4B** units installed in 2012, and efficacy values from 50-85 lm/W.

Impact of Project: a low-cost, high-efficiency optical architecture applicable to numerous high-efficacy, broad-area LED luminaire form factors

• By end of Project:

Demonstration luminaire with broad area (~24"x48"x0.5"), warm-white (3000K) and high color quality (> 90 CRI) light output at **>116 lm/W**, and an estimated end-user price of **<\$30/klm**

• 1-3 Years after project:

Proliferation into other retrofit/replacement fixtures, as well as development of **novel form factors** enabled by this cost-effective, lightweight architecture

Approach

This new Light Module architecture will simultaneously enable:

- High optical, thermal efficiency
- Reduced LED count
- Fewer mechanical piece parts
- Simplified integration and assembly

► Lowered \$/klm

Energy Efficiency & Renewable Energy

Approach (cont.)

Development Focus

CHALLENGES

- Compact, high-efficacy and high-CRI LED
- LED intensity, color vs. emission angle
- Light spreading, extraction, diffusion
- Achieving > 90% net optical efficiency
- Very low (< 0.5") overall thickness
- Manufacturable fabrication processes
- Low bill of materials, assembly costs
- Low-profile electrical interconnections
- Highly compact > 90% efficient driver
- Minimized handling & number of steps
- Simple, rapid assembly
- Mechanical stability with minimal BOM

Progress and Accomplishments

LEDs: higher efficacy and color quality through spectral engineering

Progress and Accomplishments (cont.)

Light Module: an optical "repeat unit" that optimally couples and extracts light

Renewable Energy

Progress and Accomplishments (cont.)

Light Module prototypes: verify modeled optical efficiency

End-of-program 24x48" demonstration

	Description	LumFlux Im	Relative %	u'	v	сст К	CRI
No Waveguide	LED only	105.6	100%	0.2570	0.5268	2820	80
Waveguide	Without diffuser With diffuser	102.5 99.3	97.0% 94.1%	0.2560	0.5267	2843 2837	80 80

✓ Milestone met: >90% optical efficiency from LED to ambient

Project Integration and Collaboration

Project Integration: CREE SBTC personnel are working closely with CREE R&D and product development groups at all stages of project to ensure viability for commercialization

Partners, Subcontractors, and Collaborators: no external partners, but collaborative groups within Cree's R&D and product development teams

Communications: project results have been presented at recent DOE SSL Manufacturing and R&D Workshops Energy Efficiency & Renewable Energy Next Steps and Future Plans:

- Refine Light Module optical design and fabrication techniques with focus on co-optimizing **uniformity, yield, and cost**
- Assemble and test a **demonstration luminaire** to demonstrate benefits of this new platform
- Continue to work closely with CREE product development groups on transition to product commercialization
- Technology proliferation: identify new form factors and applications enabled by lowered \$/klm offered by this platform

REFERENCE SLIDES

Energy Efficiency & Renewable Energy

Project Budget

Project Budget: \$4.7MM total over two years, with \$2.35MM Federal Share **Variances**: none of note.

Cost to Date: \$1.95MM in Federal Share to date*, or 83% of total allocated. **Additional Funding**: 50% Cree Cost Share (\$2.35MM)

Budget History										
	- 9/30/14 ast)	– 10/1/14 (curi	· · ·							
DOE	Cost-share	DOE	Cost-share							
\$ 1,427,299	\$ 1,427,299	\$ 833,714	\$ 833,714							

* March 2015 spending has not been included in this total, since it has not yet been verified by CREE Accounting.

Project Plan and Schedule

Project Schedule													
Project Start: 8/1/13		Completed Work											
Projected End: 7/31/15		Active Task (in progress work)											
		Milestone/Deliverable (Originally Planned) - Missed											
		Milestone/Deliverable (Actual)											
		FY2	013			FY2014				FY2015			
Task	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Past Work													
LED efficacy 140 lm/W at 25°C, 35 A/cm ²													
Verify intensity and color mixing capabilities of													
waveguide/extractor element													
LED efficacy of 150 lm/W at 25°C, 35 A/cm ² , 90													
High-throughput, high-yield selective LED phosphor													
application process													
Down-select package substrate material based on													
cost, thermal properties													
Achieve substrate reflective coating with >90%													
reflectivity													
Verify reliability of prototype LED package													
Design and build Light Module optics elements													
Model and verify intensity and color mixing													
capabilities of waveguide/extractor element													
Achieve high Light Module optical efficiency with													
fully optimized compact high-efficacy/high-CRI													
Develop manufacturing processes for optimized													
Light Module subsystems													
Define critical feature dimensions and tolerances													
Develop low-cost electrical interconnection													
scheme for low-profile luminaires													
Complete LED substrate die attach and thermal													
shock reliability testing													
Develop manufacturing processes for optimized													
Light Module subsystems													
Design and build compact and efficient electrical													
driver													
Design and build lightweight mechanical structure													
for low-profile, broad-area luminaires													
Design and fabricate 6 x 6" or larger Light Module													

Project Plan and Schedule (cont.)

Project Schedule												
Project Start: 8/1/13	2 8/1/13 Completed Work											
Projected End: 7/31/15		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) - Missed										
	۲	Milestone/Deliverable (Actual)										
		FY2	2013			FY2	2014			FY2	2015	
Task	<u>5</u>	8	g	Q4	5	8	ő	Q4	<u>5</u>	62	g	Q4
	- U						Ť	Ť			Ť	Ť
Current/Future Work		1										1
Model and verify intensity and color mixing												
capabilities of waveguide/extractor element												
Achieve high optical efficiency with fully optimized												
compact high-efficacy/high-CRI LEDs												
Define critical feature dimensions and tolerances											<	
Develop low-cost electrical interconnection												
scheme for low-profile luminaires												
Design and build compact and efficient (>90%)												
electrical driver												ľ.
Design and build lightweight mechanical structure												
for low-profile, broad-area luminaires												
LED efficacy of 162 lm/W at 25°C, 35 A/cm2, 90												
CRI, 3000K CCT												
Develop high-throughput, high-yield selective LED										Y		
phosphor application												
Achieve substrate reflective coating with >95%									5			
reflectivity									Ý			
Verify reliability of prototype package												
Model and verify intensity and color mixing												
capabilities of waveguide/extractor element												
Develop manufacturing processes for optimized												
Light Module subsystems												
Assemble and test 2' x 4'demonstration luminaire												
based on Light Modules												
Final estimation of assembled luminaire costs and												
end-user price												