Development & Industrialization of InGaN/GaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture

2015 Building Technologies Office Peer Review

Joseph Flemish, Lumileds joe.flemish@philips.com

Project Summary

Timeline:

Key Partners: None

Start date: August 1, 2013 Planned end date: July 31, 2015

Key Milestones:

- 1. Repeatable demonstration of PSS emitter performance within 1.5% of the TFFC counterpart;
 - met January 2014
- 2. Demonstration of PSS emitter performance exceeding TFFC counterpart by 2%:
 - met January 2015
- 3. Industrialization of PSS flip-chip process with light output equal to or better than TFFC devices in a low-cost package: target: July 31, 2015

Budget:

Total DOE \$ to date: \$1,299,711 (Feb 2015) Total future DOE \$: \$591,179

Target Market/Audience:

Commercial products are targeted for the highbrightness illumination markets.

Project Goal:

Develop Patterned Sapphire Substrate (PSS) – based LEDs with performance matching the best thin-film flip-chip devices to enable nextgeneration, low-cost LED products.

Purpose and Objectives

Problem Statement:

- In Lumileds' traditional products, the highest Lm/W performance has been from thin-film flip-chip (TFFC) LED architectures.
- Production of TFFC emitters requires a number of complex processing steps and necessitates mounting the LED to an intermediate (Level 1) package.
- This DOE-assisted project is developing next-generation LED emitters using patterned sapphire substrates as an alternative to TFFC to enable size and cost reduction while maintaining state-of-the-art performance.

Target Market and Audience:

The LED components pursued in this program are targeting indoor and outdoor illumination markets which demand the most competitive Lm/W and Lm/\$ characteristics in small footprint components.

- The endpoint of this project is commercialization targeted in 2015 of PSS-based components with best-in-class Lm/W performance at a 20% cost reduction over last year's TFFC product counterparts targeted for high-output, small-footprint illumination products.
- 2. The achievements of this project are measured by:
 - a. Near-term (performance improvements in PSS products)
 - b. Intermediate-term (commercialization of low-cost LEDs based on PSS die)
 - c. Long-term (utilization of PSS architectures in extended applications and higher levels of integration)

Problem Statement

- In Lumileds' traditional products, the best Lm/W performance has been from thin-film, flip-chip (TFFC) LEDs.
- In TFFC texturing the surface of the GaN enables 40% greater light out-put relative to a smooth surface.
- Production of TFFC devices requires removing the sapphire substrate and additional complex processing.
- The use of patterned sapphire substrates allows the sapphire substrate to remain in place and enables chipscale packaging.

TFFC Process steps

LED layers are separated from their substrate and roughened.

Energy Efficiency & Renewable Energy

Approach

Approach: Design and establish optimized patterned sapphire substrate geometries and improved LED epitaxial growth processes to enable a chip-scale package LED with state of the art performance with a >20% reduction in cost.

Key Issues: Our second generation PSS structure and process has resulted in an 8% improvement in Lm/W over our first generation PSS, thus demonstrating the potential of performance on par with the best TFFC products. This achievement is enabling Lumileds to develop the Next-Generation LED architectures for smaller and less expensive components for illumination productions in the second phase of this project.

Distinctive Characteristics: Two Next-Generation Emitter product applications are under development:

- (1) a low-cost, direct-attach, chip-scale packaged part
- (2) a small foot-print, high-drive packaged part for high directionality and high Lm/\$.

LEDs on Patterned Sapphire Substrates Enables Simplification

Energy Efficiency & Renewable Energy

Growth of LED Layers on PSS Wafers – Project Challenges

Images taken from Xiao-Hui Huang, et al. Optics Express, Vol. 19, Issue S4, pp. A949-A955 (2011)

- Design and fabrication of optimal PSS features for high light extraction and LED yield.
- Growing smooth, high-quality epitaxial layers on highly patterned PSS wafers.
- Engineering high-performance, low-cost package architectures which best exploit the features of the PSS LED die.
- Implementing high-volume manufacturing capabilities for the above.

Tradeoff of Patterned Area vs Epitaxial Layer Quality

Progress and Accomplishments

- Down-selection and industrialized manufacturing of new "PSS2" patterns.
- Established methods for automated visual inspection during PSS substrate manufacturing.
- Established LED epitaxial growth methods on all major reactor platforms.
- Wafer-level LED fabrication yield-data showing comparable performance to "process of record" epitaxial wafers.
- Demonstrated initial data showing PSS2 emitter performance in 1mm² LUXEON Q package exceeding its LUXEON Rebel TFFC counterpart in multiple epitaxial growth and wafer fabrication runs.
- ~4-5% gain in light output attributed to PSS2 added to ~4% gain in LUXEON Q through Gen2 die design.
- Commercial release of the PSS2 pattern and epitaxial growth process into LUXEON Q products, with the official product data sheet updated for higher flux specifications (>12% gain in flux for 3000K 80 CRI at 35A/cm2).
- Down-selection of candidate packaging concepts for next-generation emitter architecture.

- 5-8% higher Wall Plug Efficiency by optimizing the PSS substrate and epitaxy.
- Largest improvements are seen at highest drive current.
- These improvements have been released in Luxeon Q products and are enabling our "Next-Generation Emitters"

PSS2 % WPE gains over PSS1 at 250											
λbin	350mA 700mA 1000m										
41	5.9	7.4	8.7								
42	5.4	6.9	7.9								
43	4.9	6.1	6.8								
Avg	5.4	6.8	7.8								

Market Impact of Project

Advancements in PSS pattern design and LED die architecture have improved the light output performance of Lumileds LUXEON Q product by more than 8% allowing future expansion of this technology to more applications.

PSS Comparison to TFFC State of the Art

- LUXEON Q is the first generation PSS product from Lumileds introduced in 2013
- Product is a PSS flip-chip die attached to reflective submount (not a CSP product)
- At introduction the initial efficacy lagged behind the TFFC product leader LUXEON
- Product Spec sheet revised in 2014 for LUXEON Q based on improved flux!

LUXEON Q Increase in flux from 2014 to 2015 (data sheet values)

Luxeon Q Pr	oduct	May 2014	Jai	PSS2-G2 effect				
Lumileds Part Number	Nominal CCT (K)	Typical Luminous Flux (lm)	Typical Luminous Flux (Im)	Typica	l Efficacy	(Im/W)	%	
		350 mA	350 mA	350 mA	700 mA	1000 mA	increase	
L1Q0-278000000zzz0	2700K	100	113	115	97	87	13.0%	
L1Q0-308000000zzz0	3000K	102	115	117	99	88	12.7%	
L1Q0-358000000zzz0	3500K	106	117	119	102	92	10.4%	
L1Q0-407000000zzz0	4000K	123	132	134	115	104	7.3%	
L1Q0-577000000zzz0	5700K	127	134	136	118	106	5.5%	

The PSS2 die in a LUXEON Q package offers performance on par with best TFFC products.

- 1mm² die in a 3.5x3.5 mm ceramic package,
- non-Lambertian radiation profile.

We are presently working toward achieving the same PSS performance in smaller packages to meet targeted market applications in the illumination markets.

- 2.5x2.5mm and smaller packages
- Option for direct-attached and unpackaged devices
- Lambertian radiation profiles.

РНШРЗ

Project Integration:

- This project is a collaboration of Lumiled's staff in (1) Technology Development (2) Manufacturing Operations and (3) Product Development and (3) Sales and Marketing.
- The demands of our customers and emerging applications are identified by the Marketing and Product Development teams and drive the future requirements for size, performance and cost.
- Lumileds Technology Development and Manufacturing teams have collaborated closely to ensure timely industrialization of new processes and methods developed in this program.
- All funded work has been performed internally at our San Jose, CA facility without subcontracts.

Communications:

Results have been communicated in regular reports to DoE SSL division, annual peer review meetings and SSL's R&D workshops.

- Establish low-cost next generation emitter architectures for illumination products.
- Applications are demanding smaller footprints, lower profiles, higher performance and lower cost!

Current Tasks and Challenges of PSS architectures

- Maintaining high Lm/W in smaller package sizes
- Obtaining high-efficacy with directional illumination (managing side-emission).
- High ESD robustness in direct attach products

REFERENCE SLIDES

Energy Efficiency & Renewable Energy Project Budget: Total allocated budget for 2 years is \$3,781,783 with 50% cost share
Variances: As of February 2015 there is a variance of \$402,026.
Cost to Date: \$2,599,424 out of \$3,781,783 has been spent through Feb 2015 (DOE portion is 50%).

Additional Funding: None

Budget History												
August 1, 20 (pa	13 – FY2014 st)	FY2015 - Ju (current –	ly 31, 2015 end date)	FY2	016							
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share							
\$1,048,732	\$1,048,732	\$842,160	\$842,160	NA	NA							

Project Plan and Schedule

Project start: August 1, 2013

Project finish: July 31, 2015

Task and Milestone Description		20 ג)13	4Q 2013			1Q 2014			2Q 2014			3Q 2014			4Q 2014			1Q 2015			2Q 2015		15	;	
		Aug	Sep	Oct	Nov	Dec	Jan	Feb I	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr I	May	Jun	Jul	
Predictive Modeling																										
Optimize PSS Fabrication																										
Optimize PSS Epitaxy																										
Validate Performance (Yield, LOP)																										
Demonstrate Gen 1 PSS lamps with light output within 1.5% of TFFC							<																			
Validate Gen 2 Performance (Yield, LOP)																										
Demonstrate Industrialized Equivalent performance of FC-PSS die to TFFC (within 0.5%)													<													
Investigate PSS-FC low-cost packaging architecture																										
Explore further enhancements to PSS design and fabrication methods																										
Produce and compare PSS LED devices to established TFFC baseline																										
Validate Performance (Yield, LOP)																										
Demonstrate Gen 2 PSS lamps with light output greater than TFFC by 2.0%																										
Establish low-cost, high-efficiency package architecture for warm white PSS-FC																										
Industrialization of FC-PSS emitter with equivalent performance to TFFC at reduced cost																										

Energy Efficiency & Renewable Energy