DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

Renewable Acid-hydrolysis Condensation Hydrotreating (REACH) Pilot Plant

This presentation does not contain any proprietary, confidential, or otherwise restricted information

March 23, 2015 Technology Area Review

> Karl Seck Mercurius Biofuels

Goal Statement

- Design, build, and operate a pilot plant to scale-up the Mercurius REACH[™] process.
- REACH[™] a novel technology that efficiently converts cellulosic biomass into drop-in hydrocarbon jet fuel and diesel.
- Provides an economically viable technology to start building cellulosic biofuel capacity for RSF mandates.
- Competes with petroleum economics down to \$40/bbl.

Quad Chart Overview

Timeline

- October 1, 2013
- December 2016 (estimate)
- Percent complete = 14%

Budget

	Total Costs FY 10 – FY 12	FY 13 Costs	FY 14 Costs	Total Planned Funding (FY 15- Project End Date
DOE Funded	0	10k	575k	4.25 mil
Project Cost Share (Comp.)*	0	10k	575k	4.25 mil

Barriers

- Barriers addressed:
 - Does not fit in category to be mentioned in <u>Multi-Year Program Plan</u>
 - High Risk of Large Capital Investments
 - Liquid Phase Catalytic = low CapEx
 - Well known already scaled processes
 - Cost of Production
 - Feedstock flexible
 - No enzymes
 - Distributive model capable
 - Reduces Technology Development Costs
 - No genetic research
 - Analogs in Pulp/Paper and Petroleum

3

Partners

- Sub-recipients:
 - Purdue University, 20%
 - University Of Maine, TBD
- CSIRO Melbourne

1 - Project Overview

- Design, build, and operate a pilot plant to scale-up the Mercurius REACH[™] process and provide fuel for certification testing.
- Started award negotiations, April 2013, DOE kick-off June 2013.
- Changed front-end technology provider because applicate partner refused to participate – developed in-house instead.
- DOE agreed to add a BP-1A for research optimization.
 - CSIRO small bench scale investigation of multiple steps of technology
 - Purdue scales-up acid hydrolysis to 1 L size
 - Multiple 400 L runs at MSUBI
- BP-1A technical completion June 2014:
 - Favorable IE report
 - DOE provided technical GO decision

2 – Approach (Technical)

- REACH technology is <u>Re</u>newable <u>A</u>cid-hydrolysis <u>C</u>ondensation <u>H</u>ydrotreating
 - Acid hydrolysis to non-sugar intermediates CMF(converted to other compounds) and furfural.
 - Condensation reactions to combine intermediates for carbon chain length.
 - Hydrotreat to drop-in hydrocarbon jet fuel and diesel.
- Critical success factors:
 - Confirm reaction parameters, residence times, and product yields.
 - Confirm relative insensitivity to feedstocks.
 - Bench scale-up to inform pilot plant design.
 - Pilot runs to provide data including: catalyst life and recovery, solvent recycle, product quality; for commercial plant design.
 - Successful product testing for certification.
- Potential challenges: (technical and non-technical) to be overcome for achieving successful project results
 - Technical Acid recovery/recycle, product quality, techno-econ validation.
 - Non-technical fund raising and DOE interface issues.

2 – Approach (Management)

- Use accepted Front End Loading (FEL) project management procedures to manage project.
- Focus on safety especially during BP-2 activities.
- *Reduce CapEx by re-using existing equipment and facilities.*
- *Reduce OpEx by sharing or contracting with existing/trained labor.*
- Maximize in-kind cost share through out project.
- Use project successes in pitch to potential investors.
- *Barriers concern with DOE 25% contingency fund requirement.*

3 – Technical Accomplishments/ Progress/Results

- Acid-hydrolysis
 - Verified CMF yields with multiple feed stocks at bench scale.
 - Developed pretreatment to maximize furfural yields.
 - CSIRO data for: corn stover, hard wood, and sugar cane bagasse.
 - Purdue assembled and operated 1 L pressure reactor using corn stover.
 - MSUBI scaled up to 400 L with existing equipment.
- Condensation
 - CSIRO investigated CMF conversion to levulinic compounds and identified the best path forward for pilot plant investigation.
 - CSIRO investigate multiple condensation pathways and identified most promising pathway.
 - Purdue scaled up both condensation feed generation and condensation reactions.
- Hydrotreating -
 - Battelle ran small scale hydrotreating with Purdue supplied feedstock.
 - Mixed results but accomplished primary objective of complete deoxygenation to jet fuel range hydrocarbons.

- Milestones Go decision on proceeding to next budget period, BP-1B, front end engineering for pilot plant.
- Current optimized block flow:

• Acid Hydrolysis Data:

Untreated cornstover produced a maximum of 77% theoretical yield of CMF. Increasing the loading to 20% decreased the CMF yield to 63%.

	Expt No.	Biomass	Loading (%)	Solvent	No. of solvent extractions	Time (h)	HCI	CMF (% mass of biomass)	CMF (% theoretical yield %)
Biomass Cornstover	LP-2-15	Milled	2.5	DCE	6	5		27.1	76.9
	LP-2-22				4	3	37%	26.2	74.4
	LP-2-25		5					26.4	74.9
	LP-2-28		10					22.7	64.5
	LP-2-34		15					19.1	54.3
	LP-2-37		20					22.2	62.9
	LP-2-50		2.5	25% DCE: 75% Toluene				14.3	40.7
	LP-2-53			Toluene				13.2	37.4
	25	GFR 8 (210°C) Residue	1	Toluene	1	1		23.1	42.6
	28						20%	0	0
	29							0	0

• Feed Prep Data:

• Condensation Data:

4 – Relevance

- Lowers Capex for cellulosic biofuels
 - Liquid phase catalytic process inherently more capital efficient
 - 3-5 \$ per annual gallon of capacity
 - Pilot project will firm up Capex estimates
- Lowers Opex for cellulosic biofuels
 - Does not require enzymes for hydrolysis
 - Robust acid hydrolysis is feedstock flexible
 - Lower cost harvest and feedstock storage techniques in development
 - No genetically modified organisms or feedstocks required
 - Distributive model would lower costs further
- Provides viable, low cost pathway from cellulosic biomass to drop-in, hydrocarbon jet fuel and diesel.

5 – Future Work

- BP-1B will start in April 2015, 4-6 months to complete FEL engineering for the pilot plant.
- After a GO decision at the end of BP-1B move into BP-2.
- Final budget period, BP-2:
 - Detailed design of pilot
 - Procurement and construction of pilot
 - Startup and operation
 - Investigation of multiple feedstocks, recycles, recoveries, etc.

Summary

- Early stage project that is on track to meet project deliverables and milestones.
- Successfully completed BP-1A.
- Project has been very efficient and will continue to look for existing facilities and opportunities to reduce costs.

- Primary barrier to date has been fund raising.
- Potentially game-changing technology.

Thank You!

Renewable Acid-hydrolysis Condensation Hydrotreating (REACH) Pilot Plant

March 23, 2015 DOE Peer Review

Karl Seck Mercurius Biofuels

