

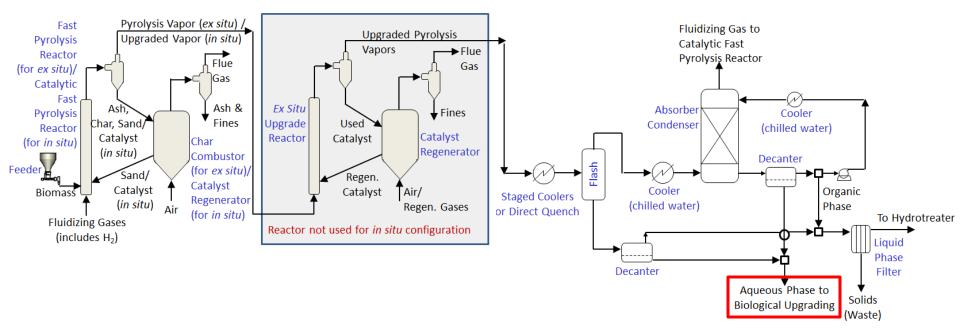
# **Biological Pyrolysis Oil Upgrading** WBS 2.3.2.301



2015 DOE BioEnergy Technologies Office (BETO) Project Peer Review Date: March 24<sup>th</sup>, 2015 Technology Area Review: Thermochemical Conversion

Principal Investigator: Gregg T. Beckham

**Organization: National Renewable Energy Laboratory** 


This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

### **Goal Statement**

#### Goal: develop approaches for waste valorization in pyrolysis processes

- · Contribute to 2022 cost targets through valorization of waste streams to fuels or chemicals
- Focus on products with sufficient market size and growth potential to aid bioenergy industry

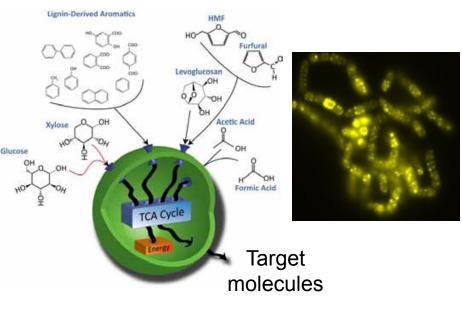


#### Waste valorization will be a major benefit to the US TC-based biorefinery infrastructure

- Conduct TEA/LCA to identify cost drivers and data gaps, and to refine process options
- Collaborate with industry and academic groups for development of tangible upgrading processes
- **Outcome:** demonstrated integrated approaches for converting TC waste streams to valuable compounds

### **Quad Chart**

| End date                                                                                                                                                      | <b>Timeline</b><br>te: October 20<br>e: September<br>complete: 30 | )14<br>2017                                            | <ul> <li>Barriers</li> <li>Tt-N Aqueous Phase Utilization and<br/>Wastewater Treatment</li> <li>Tt-R Process Integration</li> <li>Tt-J Catalytic Upgrading of Bio-Oil<br/>Intermediates to Fuels and Chemicals</li> </ul>                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                               | Budget                                                            |                                                        | Partners and Collaborators                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                               | FY14 Costs                                                        | Total Planned<br>Funding<br>(FY15-Project<br>End Date) | <ul> <li>Industry partners: RTI International</li> <li>NREL BETO Projects: Thermochemical Platform Analysis         <ul> <li>NREL, Catalytic Pyrolysis Science – NREL, Lignin             Utilization, other NREL BETO-funded TC projects that             produce aqueous waste streams</li> </ul> </li> </ul>                                |
| DOE funded                                                                                                                                                    | \$318,837                                                         | \$934,163*                                             | <ul> <li>BETO-funded National Lab Projects: Oak Ridge<br/>National Laboratory (A. Guss), PNNL (in discussions)</li> </ul>                                                                                                                                                                                                                      |
| * This does not currently include a<br>funding request for FY16 and FY17, but<br>the project is slated to continue in both<br>FY16 and FY17 with flat funding |                                                                   | clude a<br>nd FY17, but<br>nue in both<br>nding        | <ul> <li>Office of Science funded efforts: Environmental<br/>Molecular Sciences Laboratory, Pacific Northwest National<br/>Laboratory (through a competitively awarded proposal)</li> <li>Academic collaborators: Iowa State University,<br/>University of Georgia, University of Portsmouth, University<br/>of Tennessee Knoxville</li> </ul> |


### **Project Overview**

**History**: Valorization of waste streams from TC processes identified as a key MYPP technical barrier that currently places a large cost burden on wastewater treatment

- Project started as a BETO seed project in FY14, met major Go/No-Go decision in Sept 2014
- Leverage significant work in BC Platform Lignin Utilization project

# **Context**: Nearly all TC processes produce aqueous waste streams at various points

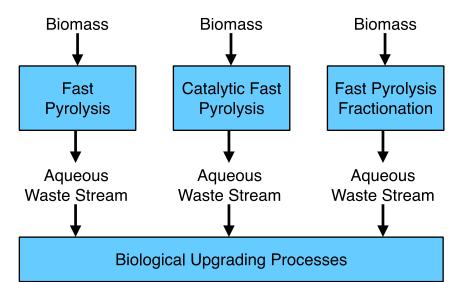
- Recapture and valorize lost carbon
- Reduce burden on wastewater treatment
- Enable a value-added co-product stream
- Approach adaptable to most TC processes



#### **Project Objectives:**

- Develop biological strategies for valorization of TC waste streams
- Conduct process development with "upstream" thermochemical conversion projects
- Employ TEA/LCA to define process targets and choose co-products of interest for fuels or chemical applications

## **Technical Approach**


#### **Aim 1:** Develop biological catalysts that are able to metabolize a wide range of substrates Lignin-Derived Aromatics Furfural Levoglucosan Acetic Acid Xylose Glucose Formic Acid TCA Cycle Target molecules

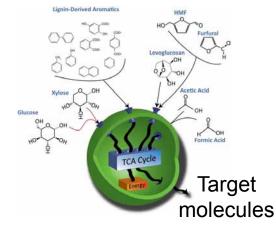
#### Approach:

- Engineer microbes to catabolize broad substrate ranges
- Evolve strains for higher tolerance **Challenges:** Substrate specificity, yields, toxicity

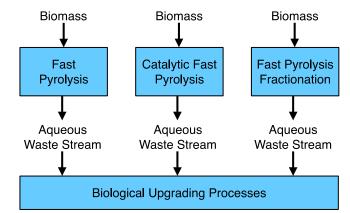
#### **Critical Success Factors:**

#### **Aim 2:** Obtain and characterize streams from TC processes and tailor organisms to these streams




#### Approach:

- Characterize TC waste streams
- Tailor organism to process-relevant TC streams
- Conduct TEA to understand cost drivers Challenges: Sufficient/consistent substrate
- Develop organism and process to achieve yields of co-products to achieve economic viability
- Incorporation into industrial processes for wastewater valorization from TC processes
- Discovery of novel biological transformations to build a "catabolic toolbox" for WW upgrading


## **Management Approach**

- Develop simple, integrated approaches and use TEA/LCA and Go/No-Go's to refine options
- Employ fundamentals-driven science/engineering approach with an interdisciplinary approach

**Aim 1:** Develop biological catalysts that are able to metabolize a wide range of substrates

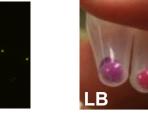


**Aim 2:** Obtain and characterize streams from TC processes and tailor organisms to these streams



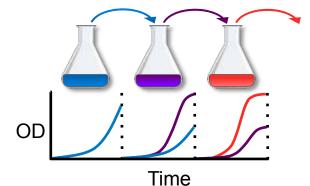
Assembled team of experts in metabolic engineering and organism development

- Milestones in this aim center on **substrate utilization** and **organism selection**
- Leverage biological work from Lignin
   Utilization (BC) project as a basis for this work
- Surpassed major "Go/No-Go" milestone at end of FY14, enabling further project work


Collaborate with RTI, NREL, Iowa State University and other TC research groups to obtain process-relevant streams

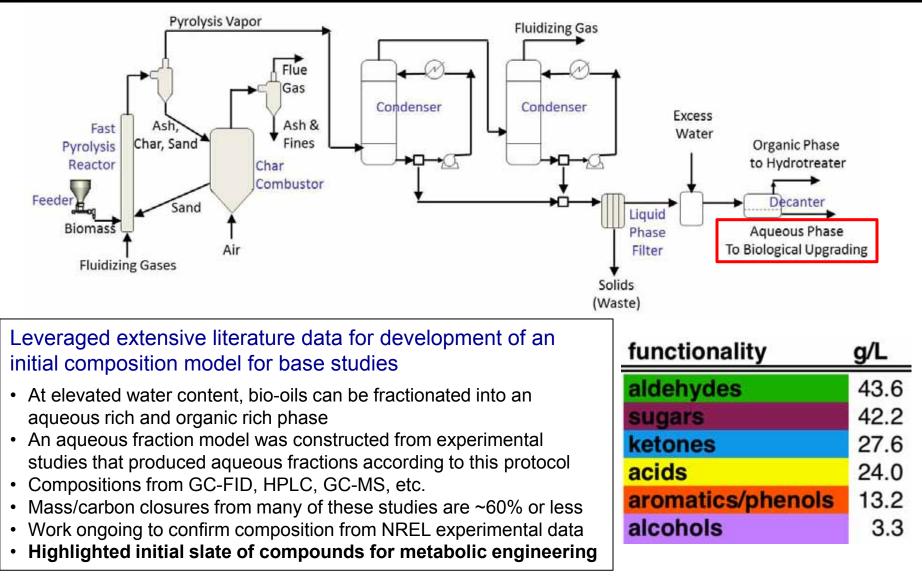
- Milestones in this aim center on TEA modeling, substrate characterization, and tailoring/evolving organisms
- Team includes TEA and fermentation expertise
- Leverage new techniques from our group to fingerprint molecules in waste streams

## NATIONAL RENEWABLE ENERGY LABORATORY


## **Technical Results – Outline**

- Developed base model for FP aqueous streams as a "starting" point
- Expanding substrate utilization in a robust biocatalyst: phenol, guaiacol, levoglucosan, cellobiosan, furfural, HMF, and beyond
- Initial tests on mock aqueous pyrolysis oil
- Streams in hand from FP, CFP, fractionation of FP streams
- Initial strain evaluations and strain evolution going forward




Pv-

Oil



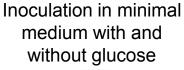


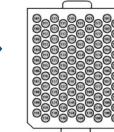
## **Base model development for Fast Pyrolysis**




Studies considered include: Vispute *et al. Green Chem* **2009**; Vispute *et al. Science* **2010**; Tessini *et al. J Chromatogr A* **2011**; Valle *et al. Int J Hydrogen Energy* **2013**; Sukhbaatar *et al. Bioresour Technol* **2014**; Remon *et al. Int J Hydrogen Energy* **2014** 

#### Toxic concentrations of pure compounds for P. putida KT2440

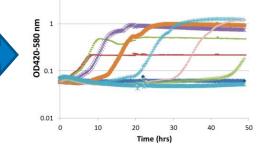

Results of Bioscreen C growth assays:


- In general, aldehydes (4-hydroxybenzaldehyde, hydroxyacetaldehyde, vanillin) are more toxic than organic acids
- At concentrations found in aqueous pyrolysis oil, catechol and hydroxyacetaldehyde will be particularly challenging due to their high toxicities
- *P. putida* KT2440 is capable of using the compounds highlighted in green as carbon sources
- Further toxicity studies are being conducted with additional compounds as they are identified and quantified

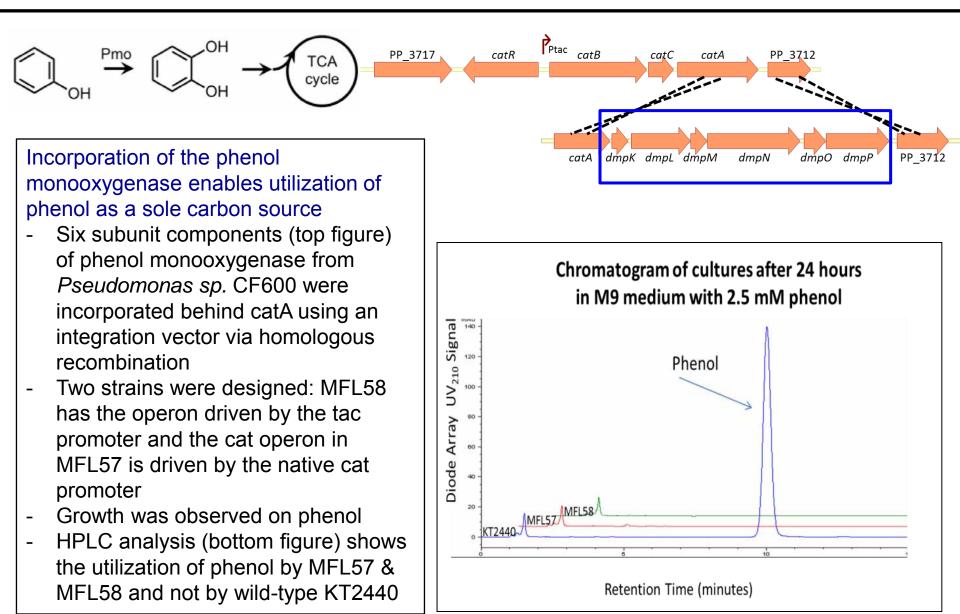
| Species               | Conc where<br>Growth<br>Observed<br>(g/L) | Conc where No<br>Growth<br>Observed<br>(g/L) | Conc present<br>in Pyrolysis<br>Oils<br>(g/L) |
|-----------------------|-------------------------------------------|----------------------------------------------|-----------------------------------------------|
| 4-Hydroxybenzaldehyde | 1.2                                       | 1.5                                          |                                               |
| 4-hydroxybenzoic acid | 22.5                                      | 45.0                                         |                                               |
| Acetic acid           | 6.0                                       | 12.0                                         | 14.7                                          |
| Benzoic acid          | 1.2                                       | 6.0                                          |                                               |
| Catechol              | 2.0                                       | 5.0                                          | 27.5                                          |
| p-Coumaric acid       | 15.0                                      | 30.0                                         |                                               |
| Ferulic acid          | 28.0                                      | 28.0                                         |                                               |
| Furfural              | 2.9                                       | 3.8                                          | 2.0                                           |
| Guaiacol              | 1.2                                       | 6.0                                          | 1.2-3.6                                       |
| HMF                   | 4.0                                       | 20.0                                         | 8.1                                           |
| Hydroxyacetaldehyde   | 0.3                                       | 0.5                                          | 3-52                                          |
| Hydroxyacetone        | 12.5                                      | 25.0                                         | 14.7                                          |
| Malonic acid          |                                           |                                              |                                               |
| Phenol                | 1.0                                       | 1.9                                          |                                               |
| Syringaldehyde        | 2.9                                       | -                                            |                                               |
| Syringol              | 0.5                                       | 1.0                                          |                                               |
| Vanillic acid         | 20.0                                      | 40.0                                         |                                               |







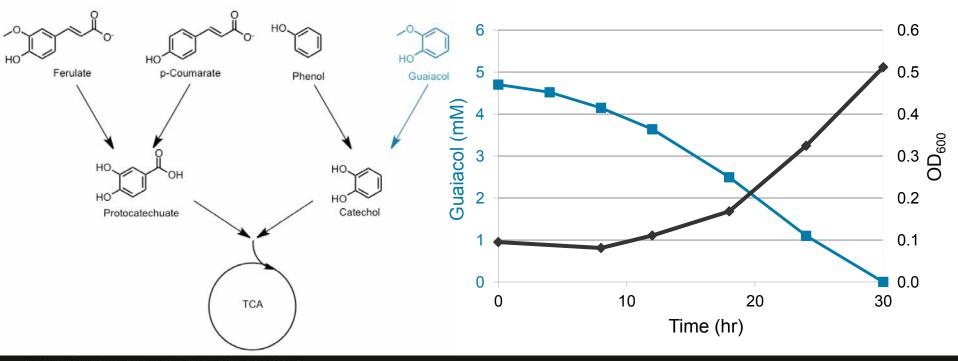




Incubation at 30°C



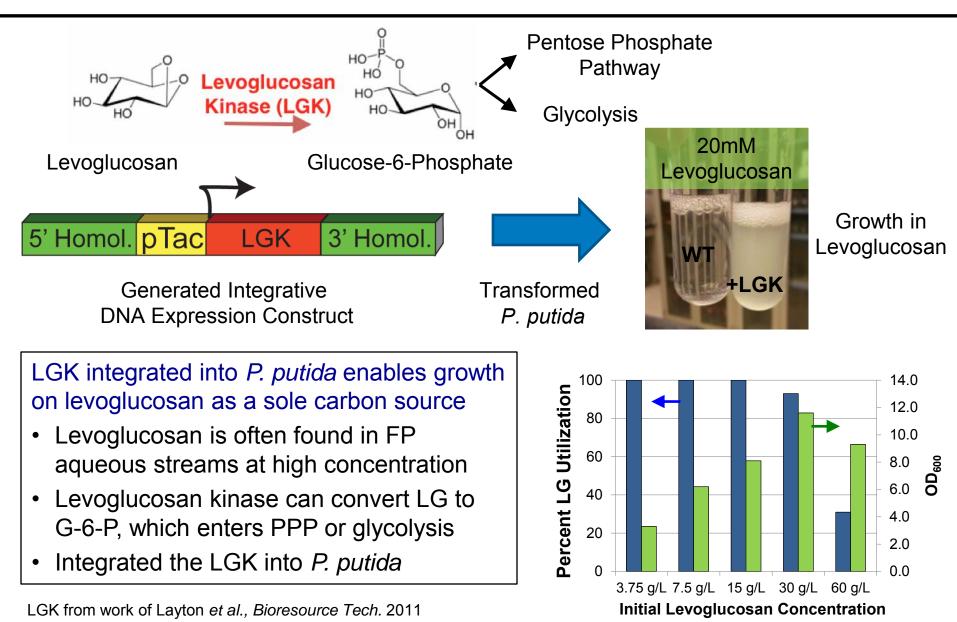
Growth at several inhibitor levels



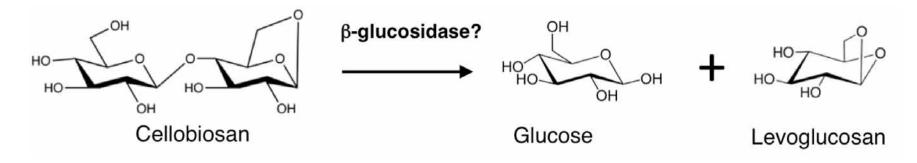

## Phenol utilization by P. putida KT2440



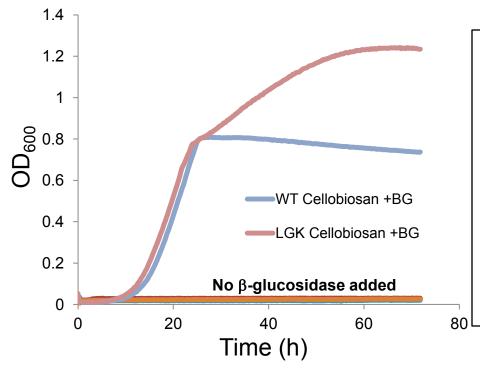
### Guaiacol utilization by P. putida KT2440


Introduction of a guaiacol O-demethylase and a co-transcribed reductase into *P. putida* enabled growth on guaiacol as a sole carbon source

- Guaiacol is a common pyrolysis product that some bacteria are able to metabolize through catechol
- Previous work has partially described O-demethylases that convert guaiacol to catechol, but the genes encoding these enzymes were not identified
- We discovered a gene responsible for this transformation




#### NATIONAL RENEWABLE ENERGY LABORATORY


## Levoglucosan utilization by P. putida KT2440

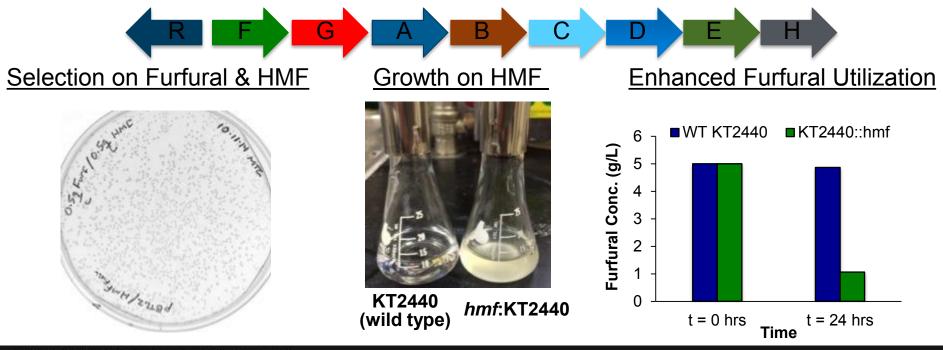


### Cellobiosan utilization by P. putida KT2440



# Levoglucosan utilizing *P. putida* strain can fully utilize cellobiosan with $\beta$ -glucosidase addition

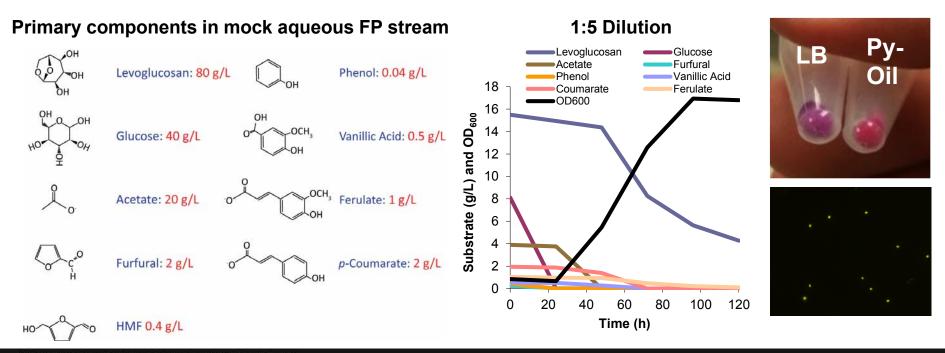



# Exogenous $\beta$ -glucosidase with LGK enables complete utilization of cellobiosan

- Cellobiosan is also often found in FP aqueous streams at high concentration
- Hypothesized that β-glucosidases could convert cellobiosan to glucose and levoglucosan
- Demonstrated that 4 different βglucosidases turnover cellobiosan

# Furfural and HMF utilization by P. putida KT2440

Integration of furfural and HMF genes into *P. putida* enables use of these species as sole carbon sources


- Operon conferring furfural/HMF utilization was recently identified (Koopman, PNAS 2010)
- Gibson assembly employed for reconstruction of an ~11kB hmf operon
- Incorporation of *hmf* operon into *P. putida* conferred growth on furfural and HMF as sole carbon sources
- >75% furfural utilization observed in engineered strains following 24 hr growth
- Efforts underway to integrate hmf operon into P. putida



### FY14 Go/No-Go Milestone Results

# Used a mock FP aqueous stream to achieve a "Go" at the end of FY14 in an engineered strain of *P. putida* KT2440

- Demonstrated biological utilization of furfural, levoglucosan, and phenol in *P. putida* KT2440
- Demonstrated ability of wild-type *P. putida* to grow in the aqueous fraction of pyrolysis oil
- Demonstrated ability of engineered *P. putida* to convert multiple py-oil components to intracellular polymers (*mcl*-PHAs), which can be converted to alkanes or hydroxy-acids (Linger *et al., PNAS* 2014)



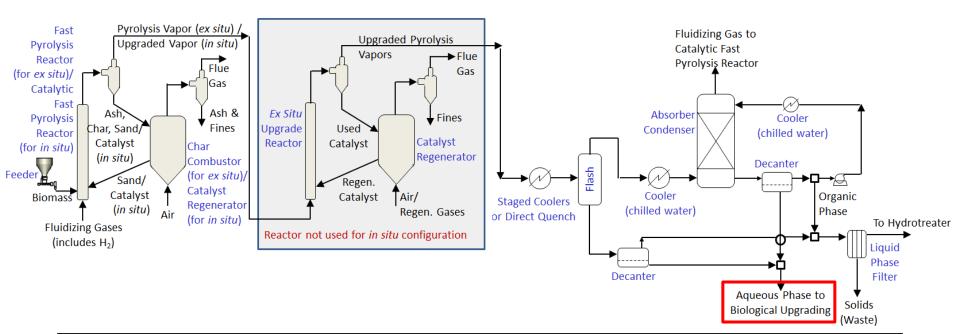
#### NATIONAL RENEWABLE ENERGY LABORATORY

## Finding genes for other substrates

Metabolic pathways for several key species present in py-oil waste streams are unknown

- Tested numerous bacteria for their ability to grow in minimal medium containing as only carbon source pure molecules which are present in py-oil
- Positive results show bacteria that posses genes to metabolize molecules of interest
- Genes can be identified and used in *P. putida* KT2440 to expand substrate specificity

|                                       | Positive | Hydroxya<br>hyd |       | -    | oxyace-<br>ne | 2-fur | anone |      | thyl-1,2-<br>entadione | Pyro | gallol | Syr  | ingol |
|---------------------------------------|----------|-----------------|-------|------|---------------|-------|-------|------|------------------------|------|--------|------|-------|
|                                       | Control  | 2 mM            | 10 mM | 2 mM | 10 mM         | 2 mM  | 10 mM | 2 mM | 10 mM                  | 2 mM | 10 mM  | 2 mM | 10 mM |
| SOIL BACTERIA (15)                    |          |                 |       |      |               |       |       |      |                        |      |        |      |       |
| Pseudomonas putida KT2440             | ++++     | -               | -     | +/-  | +/-           | -     | -     | -    | -                      | +    | +      | -    | -     |
| Pseudomonas putida mt-2               | ++++     | -               | -     | -    | -             | -     | -     | -    | -                      | +    | +      | -    | -     |
| Pseudomonas fluorescens Pf-5          | ++++     |                 | -     | -    | -             | -     | -     | -    | -                      | +    | +++    | -    | -     |
| Cupriavidus necator H16               | - (Glu-) | -               | +     | -    | -             | -     | -     | -    | -                      | +    | +++    | -    | -     |
| Azotobacter vinelandii Lipman, NRS 16 | -        | -               | -     | -    | -             | -     | -     | -    | -                      | -    | -      | -    | -     |
| Acinetobacter sp. strain ADP1         | -        | -               | -     | -    | -             | -     | -     | -    | -                      | +    | +++    | -    | -     |
| Citrobacter freundii                  | ++++     | -               | -     | -    | -             | -     | -     | -    | -                      | +    | +      | -    | -     |
| Enterobacter lignolyticus SCF1        | ++++     | -               | -     | -    | +/-           | -     | -     | -    | -                      | ++   | ++     | -    | -     |
| Amycolatopsis sp. 75iv2 (ATCC 39116)  | ++++     | -               | -     | -    | -             | -     | -     | -    | -                      | +    | +      | -    | -     |
| Rhodococcus jostii RHA 1              | ++++     | -               | - [   | ++   | -             | ++    | -     | ++   | -                      | +    | +      | -    | -     |
| Rhodococcus erythropolis U23A         | ++++     | -               |       | -    | -             | -     | -     | -    | -                      | -    | +++    | -    | -     |
| Bacillus subtilis                     | ++++     | -               | -     | -    | -             | -     | -     | -    | -                      | -    | -      | -    | -     |
| Bacillus megaterium                   | -        | -               | -     | -    | -             | -     | -     | -    | -                      | -    | -      | -    | -     |
| Burkholderia phytofirmans             | ++++     | -               | -     | -    | -             | -     | -     | -    | -                      | ++   | +++    | -    | -     |
| Pseudomonas putida S12                | ++++     | -               | -     | -    | -             | -     | -     | -    | -                      | +    | +      | -    | -     |
| MARINE BACTERIA (7)                   |          |                 |       |      |               |       |       |      |                        |      |        |      |       |
| Sagitulla stellata E-37               | +/-      | -               | -     | -    | +++           | -     | +     | -    | -                      | +    | -      | -    | -     |
| Citreicella sp SE45                   | +/-      | -               | -     | -    | -             | -     | -     | -    | -                      | -    | -      | -    | -     |
| Roseovarious nubinhibens ISM          | -        | -               | -     | -    | -             | -     | -     | -    | -                      | +    | -      | -    | -     |
| Ruegeria pomeroyi DSS-3               | +/-      | -               | -     | -    | -             | -     | -     | -    | -                      | -    | -      | -    | -     |
| Sulfitobacter sp. NAS-14.1            | -        | -               | -     | -    | -             | -     | -     | -    | -                      | -    | -      | -    | -     |
| Sulfitobacter sp. EE-36               | +/-      | -               | -     | -    | -             | -     | -     |      |                        | -    | -      | -    | -     |
| Halomonas sp.1                        | -        | -               | -     | -    | -             | -     | -     | -    | ++                     | +    | -      | -    | -     |


+  $\rightarrow$  Optical densities at least two-fold higher that the non-inoculated solution.

++  $\rightarrow$  Optical densities at least three-fold higher that the non-inoculated solution.

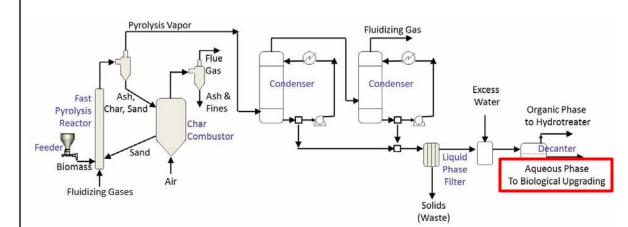
+++  $\rightarrow$  Optical densities at least four-fold higher that the non-inoculated solution.

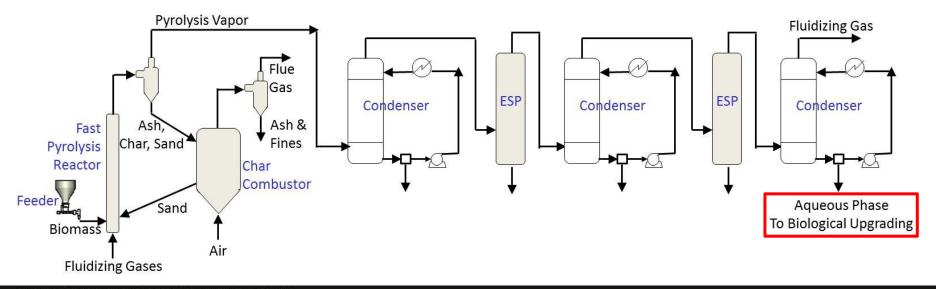
### Aqueous streams of interest: CFP



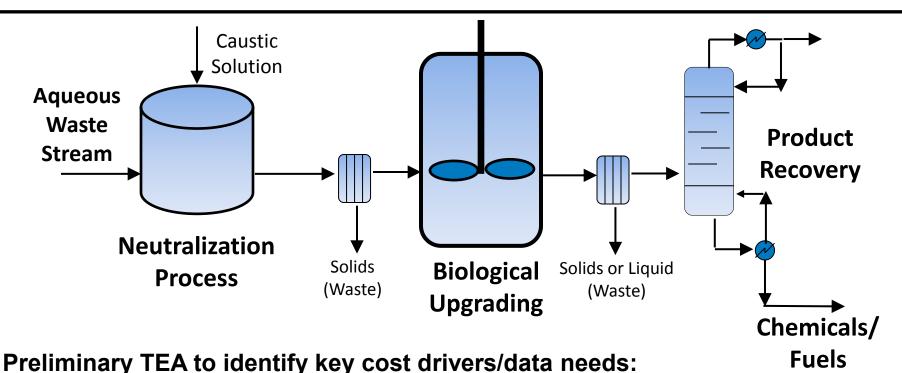


Collaborating with RTI to upgrade CFP aqueous waste streams


- Two waste streams from oak and pine
- Compositional analysis ongoing
- Initial growths of bacteria show some dilution is required, likely as a result of aldehyde content present in the waste stream
- Laboratory evolution ongoing for these waste streams


### Aqueous streams of interest: FP




Collaborating with ISU and NREL to obtain FP waste streams

- Single waste streams for each approach
- Compositional analysis ongoing
- Initial growths of bacteria show partial dilution is required





# **Preliminary TEA**



#### Neutralization process:

- Required pH for upgrading, caustic required to neutralize, carbon losses Biological Upgrading: intracellular storage products and gas-phase products
- Titer, yield, productivity and carbon conversion to desired product *Product recovery*
- Efficiency of recovery process and capital/operating costs for purification *Potential cost savings through process integration*
- Reduce WWT requirements, lower hydrotreating severity, utilize off-gas/heat

## Relevance

Valorization of aqueous waste streams will be a major contributor to 2022 HC cost targets

Highlighted in MYPP as a key barrier in TC Platform: "Research is needed to characterize organics in the aqueous phase and to convert these organics to hydrogen, biochemicals, or hydrocarbon fuels."

-

\_

-

Key MYPP areas:

Aqueous Phase Utilization and Wastewater Treatment

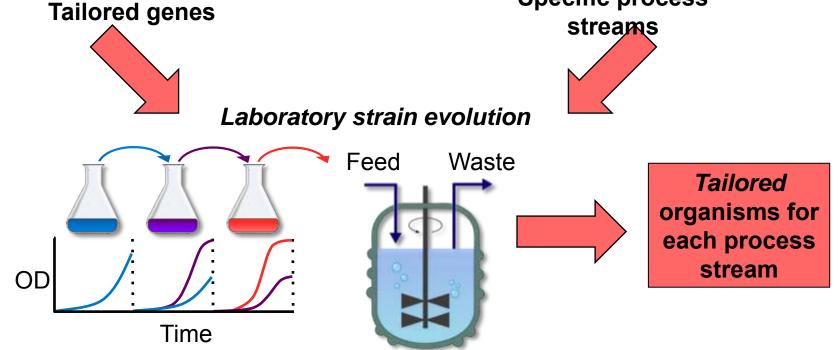
- Enables selective, tunable route for upgrading "waste" carbon
- Potential for both fuels and chemicals production via a biological route
- Maximizing use of biomass carbon

#### Process Integration

 Working with process-relevant streams from 3 TC approaches

Catalytic Upgrading of Bio-Oil Intermediates to Fuels/Chemicals

 Enables tuning of upstream catalytic steps to reduce HT cost Key Stakeholders and Impacts:


- Economics and sustainability of TC processes could significantly benefit from co-product manufacturing
- Work will enable production of fuels or chemicals from waste streams in TC biorefinery designs
- Impacts the "Whole Barrel of Oil" initiative
- Portfolio of chemicals from waste carbon will diversify and accelerate development of the biomass value chain
- Significant amounts of peer-reviewed science and IP will be generated from this work
- Methods to upgrade heterogeneous intermediates can be adapted by other platforms, e.g., Lignin Utilization

# **Future Work**

**Aim 1:** Develop biological catalysts that are able to metabolize a range of substrates

 Finalize gene sets for primary aldehydes, acids, ketones, and organic acids present in 3 TC process streams for "plug-andplay" organism engineering **Aim 2:** Obtain and characterize streams from TC processes and tailor organisms to these streams

- Finalize chemical analysis of each stream
- Select an optimal co-product based on TEA modeling of waste valorization processes
   Specific process streams



Goal: deliver tailored organisms for initial bench-scale integrated process evaluations in FY16/17, priority dictated by BETO TC Platform cost targets

# Summary

#### 1) Approach:

- develop biological catalysts that can metabolize a broad range of waste carbon and are tolerant to TCderived aqueous process streams
- collaborate widely with academic, national lab, and industrial partners including TC Platform tasks

#### 2) Technical accomplishments

- demonstrated incorporation of multiple genes into a host organism, *P. putida* KT2440 for catabolism of multiple, process-relevant organic species such as phenolics and furans
- identified multiple organisms with pathways for additional major aldehydes and ketones
- applying an adapted laboratory evolution approach to increase strain tolerance to toxic streams
- demonstrated PHA production in mock pyrolysis oil stream with minor dilution only

#### 3) Relevance

- reduce economic and sustainability burden on wastewater treatment in TC process configurations
- co-products essential to meet DOE hydrocarbon cost targets
- addresses Whole Barrel of Oil Initiative and bolsters the biomass value chain
- 4) Critical success factors and challenges
  - stream toxicity, **economic** and **sustainable** production of co-products, high yields of products needed
- 5) Future work:
  - complete comprehensive set of catabolic genes for "plug-and-play" organism engineering
  - ramp up efforts on adaptive laboratory evolution for tailoring organisms to specific process streams
- 6) Technology transfer:
  - working with **industry** to build commercialization path to wastewater valorization in TC processes

## Acknowledgements

#### NREL contributors

- Bob Baldwin
- Mary Biddy
- Adam Bratis
- Mark Davis
- Mary Ann Franden
- Michael Guarnieri
- Chris Johnson
- Rui Katahira
- Eric Karp
- Payal Khanna
- Brandon Knott
- Jeff Linger
- Bill Michener
- Ali Mohagheghi
- Claire Nimlos
- Davinia Salvachua
- Thieny Trinh
- Derek Vardon

ENERGY Energy Efficiency & BIC

**BIOMASS PROGRAM** 

- External collaborators
- Dave Dayton, RTI International
- Adam Guss, Oak Ridge National Laboratory
- Ellen Neidle, University of Georgia
- R. Robinson, E. Zink, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
- Robert Brown, Laura Jarboe, Marjorie Rover, Ryan Smith, Xianglan Bai, Iowa State University
- Alison Buchan, University of Tennessee Knoxville
- John McGeehan, Simon Cragg, University of Portsmouth

## **Additional slides**

- Publications
- Acronyms
- Literature data for FP oil model development
- Bioscreen activity assay

# **Publications**

Publications in preparation:

- 1. J.G. Linger et al., Levoglucosan and cellobiosan utilization in Pseudomonas putida
- 2. C.W. Johnson et al., Characterization of a guaiacol O-demethylase
- 3. M.T. Guarnieri et al., Furfural and 5-hydroxymethylfurfural utilization in Pseudomonas putida

# Acronyms

- CFP: Catalytic Fast Pyrolysis
- FP: Fast Pyrolysis
- LCA: Life-Cycle Analysis
- LGK: Levoglucosan Kinase
- TEA: Techno-Economic Analysis

#### Vispute et al. Green Chem 2009 data

- Fast pyrolysis of oak
- They prepare their aqueous fraction by mixing 80 g water with 9 g bio-oil, centrifuge, then decant
- Components identified via GC-FID, HPLC, and GC-MS
- Carbon closure: 60%

**Table 1**Identification of major components of aqueous fraction of<br/>bio-oil. The aqueous fraction of bio-oil was made by mixing 80 g of<br/>water with 9 g of bio-oil

| Quantification method | Species                                            | Concentration<br>(mmole carbon L <sup>-1</sup> ) | % of total carbon |
|-----------------------|----------------------------------------------------|--------------------------------------------------|-------------------|
| GC-FID                | Hydroxyacetone                                     | 135.5                                            | 6.5               |
| GC-FID                | Hydroxyacetaldehyde                                | 28.1                                             | 1.4               |
| GC-FID                | Guaiacols and derivatives                          | 30.8                                             | 1.5               |
| HPLC                  | Sugars                                             | 377.4                                            | 18.2              |
| HPLC                  | Levoglucosan                                       | 390.6                                            | 18.8              |
| GC-FID                | Acetic acid                                        | 182.2                                            | 8.8               |
| GC-MS                 | Furfural and 2-furanone                            | 100.0                                            | 4.8               |
|                       | Total carbon content<br>identified by GC &<br>HPLC | 1244.6                                           | 60.0              |
|                       | Total carbon content<br>measured by TOC            | 2075.9                                           | 100               |

#### Vispute et al. Science 2010 data

- Fast pyrolysis of pine
- They prepare their aqueous fraction by mixing 28g water with 7 g bio-oil, centrifuge, then decant
- Components identified via GC-FID, HPLC, and GC-MS
- Carbon closure: 57%

#### Chemical analysis of water soluble fraction of pine wood bio-oil (WSBO) and single & twostage hydrogenation product of WSBO

Following table depicts the detailed composition of WSBO feed.

| Table S3 Compo<br>Compound | mmol                   | Classification |
|----------------------------|------------------------|----------------|
| •                          | carbon L <sup>-1</sup> |                |
| Hydroxyacetaldehyde        | 427.6                  | Aldehyde       |
| Acetic acid                | 244.1                  | Acid           |
| Hydroxyacetone             | 199.3                  | Ketone         |
| 2-Furanone                 | 37.6                   | Ketone         |
| Phenol                     | 2.5                    | Phenolic       |
| 3-Methyl-1,2-              | 45.7                   | Ketone         |
| cyclopentadione            |                        |                |
| Guaiacol                   | 10.3                   | Phenolic       |
| Catechol                   | 249.8                  | Phenolic       |
| 1-Hydroxy-2-butanone       | 20.2                   | Ketone         |
| Furfural                   | 20.9                   | Aldehyde       |
| 2-Cyclopenten-1-one        | 21.9                   | Ketone         |
| 5-Hydroxymethylfurfural    | 63.9                   | Aldehyde       |
| 4-Methyl catechol          | 47.5                   | Phenolic       |
| Levoglucosan               | 652.5                  | Sugar          |
| Sugars                     | 124.4                  | Sugar          |
| Methanol                   | 24.4                   | Alcohol        |
| Total carbon Identified    | 2192.6                 |                |
| Total carbon as measured   | 3879.4                 |                |
| by TOC                     |                        |                |

<sup>\*</sup>made by mixing 7 gm pine wood bio-oil with 28 gm water. The WSBO has 3879.4 mmol carbon L<sup>-1</sup>, hence the carbon concentration of each component is given in mmol carbon L<sup>-1</sup> from than compound in WSBO. Fraction carbon contribution of each compound can be found by dividing mmol carbon L<sup>-1</sup> for that compound by 3879.4 mmol carbon L<sup>-1</sup>.

#### Analytical parameters for HPTLC sugar letermination in bio-oil. **ESSINI** et al. J Chromatogr A 2011 data Sugars Linear range (ng) Detection limit (ng) Quantification limit (ng)

Intermediate precision<sup>a</sup> (RSD (

|   | Levogiucosan 100-800        | 00          | 180 | 11% |  |
|---|-----------------------------|-------------|-----|-----|--|
| • | Fastipyrolysis of "sawdust" | 80          | 240 | 20% |  |
|   | _Xylose 50-400              | . 16        | 48  | _   |  |
| • | Their method for preparing  | the aqueous | 42  | _   |  |
|   | fraction was not transparen | 18 18       | 59  | -   |  |

Components identified via HPTLC

Sugar concentrations in fresh bio-oil samples and extracts.

| Samples                    | Glucose         | Levoglucosan (wt%) | Cellobiosan (wt%) | Xylose (wt%) | Arabinose |
|----------------------------|-----------------|--------------------|-------------------|--------------|-----------|
| Bio-oil 1                  | ND <sup>a</sup> | 1.27               | 1.46              | ND           | ND        |
| Bio-oil 2                  | ND              | 1.90               | 1.99              | ND           | ND        |
| Bio-oil 3                  | ND              | 1.68               | 0.98              | ND           | ND        |
| Bio-oil 4                  | ND              | 2.26               | 1.40              | ND           | ND        |
| Bio-oil 4 aqueous phase    | ND              | 1.81               | 0.93              | ND           | ND        |
| Bio-oil 4 n-butanol/phase  | ND              | 0.78               | 0.82              | ND           | ND        |
| Bio-oil 4 pyrolytic lignin | ND              | 0.75               | 0.88              | ND           | ND        |

<sup>a</sup> ND, not detected; wt% weight/weight percent.

Table 3

#### Valle et al. Int J Hydrogen Energy 2013 data

- Fast pyrolysis of pine
- They prepare their aqueous fraction by adding water to bio-oil in the mass ratio 2:1
- Components identified via GC-MS
- Mass closure: 57 wt % (dry basis)

| Table 1 — Mass composition and molecular aqueous fraction of the bio-oil used. | formula of the          |
|--------------------------------------------------------------------------------|-------------------------|
| Compound                                                                       | wt%                     |
| Acetic acid                                                                    | 19.1                    |
| Acetone                                                                        | 1.0                     |
| Formic acid                                                                    | 2.7                     |
| Methanol                                                                       | 1.0                     |
| 1-Hydroxy-2-propanone                                                          | 8.7                     |
| Hydroxyacetaldehyde                                                            | 1.8                     |
| 1-Hydroxy-2-butanone                                                           | 2.0                     |
| Levoglucosane                                                                  | 19.6                    |
| Hexose                                                                         | 2.7                     |
| Other ketones                                                                  | 6.1                     |
| Other acids                                                                    | 4.7                     |
| Esters                                                                         | 3.1                     |
| Other aldehydes                                                                | 5.5                     |
| Phenols                                                                        | 13.4                    |
| Ethers                                                                         | 0.3                     |
| Alcohols                                                                       | 3.6                     |
| Others                                                                         | 1.1                     |
| Unidentified                                                                   | 3.8                     |
| Molecular formula                                                              | $C_{4.1}H_{7.4}O_{2.7}$ |

#### Sukhbaatar et al. Bioresour Technol 2014 data

- Fast pyrolysis of pine
- They prepare their aqueous fraction by adding 2 L water to 2 L bio-oil, shaking, and decanting
- Components identified via HPLC

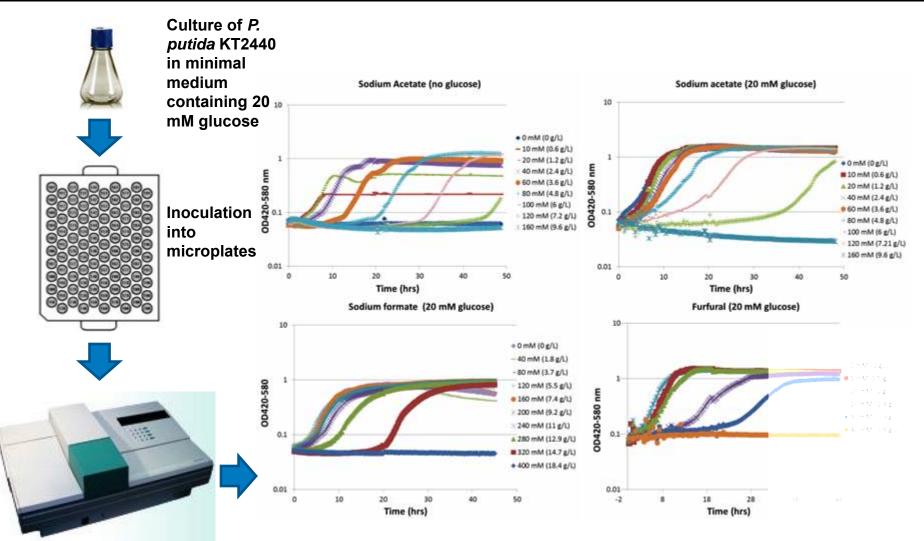
 Table 3

 Composition of bio-oil water fraction resulting from different detoxification steps.

| g/L          | Raw bio-oil     | After water extraction<br>BWF | After n-butanol extraction<br>EBWF | After hydrolysis and n-butanol evaporation<br>DBWF | After combination treatment step CAP |
|--------------|-----------------|-------------------------------|------------------------------------|----------------------------------------------------|--------------------------------------|
| Levoglucosan | 113 ± 0.4       | 77.02 ± 1.57                  | 76.60 ± 0.31                       | ND                                                 | ND                                   |
| Glucose      | ND              | ND                            |                                    | 114.19 ± 1.12                                      | 248.62 ± 0.88                        |
| Xylose       | ND              | ND                            | ND                                 | 4.91 ± 1.29                                        | $18.64 \pm 0.71$                     |
| Galactose    | ND              | ND                            | ND                                 | $10.05 \pm 0.21$                                   | 18.98 ± 0.79                         |
| Arabinose    | ND              | ND                            | ND                                 | ND                                                 | ND                                   |
| Mannose      |                 |                               | 8.11                               | 31.49 ± 1.05                                       | 53.51 ± 0.69                         |
| 5-HMF        | $4.52 \pm 0.17$ | 3.03 ± 0.69                   | ND                                 | ND                                                 | ND                                   |
| Furfural     | $5.14 \pm 0.03$ | 2.28 ± 0.18                   | ND                                 | ND                                                 | ND                                   |
| Acetic acid  | 15.01 ± 0.10    | 10.15 ± 1.78                  | ND                                 | ND                                                 | ND                                   |
| n-Butanol    | ND              | ND                            | 38.43 ± 2.11                       | 19.33 ± 0.06                                       | ND                                   |

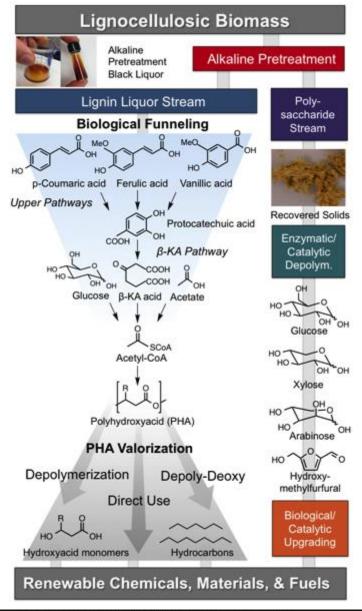
ND - not detected.

#### Remon et al. Int J Hydrogen Energy 2014 data

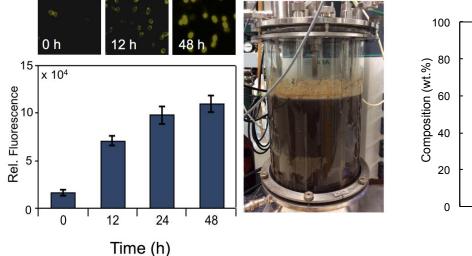

- Fast pyrolysis of pine
- They prepare their aqueous fraction by adding bio-oil to water until water to carbon molar ratio of 5.5 is reached (calculated to correspond to a 3.44:1 water:oil mass ratio), then separate precipitate by filtration
- Components identified via GC-MS
- Mass closure: 58 wt % (dry basis)

|                        | Fluidi                                        | Fluidized bed                                    |                                | ed bed                     | <i>p</i> -Value |  |
|------------------------|-----------------------------------------------|--------------------------------------------------|--------------------------------|----------------------------|-----------------|--|
|                        | Bio-oil                                       | A. Fraction                                      | Bio-oil                        | A. Fraction                |                 |  |
| Carboxylic acids       | $49.6 \pm 8.4^{A}$                            | 77.7 ± 35.9 <sup>A</sup>                         | 61.0 ± 17.0 <sup>A</sup>       | 65.7 ± 24.0 <sup>A</sup>   | 0.7090          |  |
| Acetic acid            | $\rm 33.2\pm3.3^A$                            | $44.1 \pm 19.8^{\text{A}}$                       | $43.0\pm9.8^{\text{A}}$        | $37.0 \pm 0.0^{A}$         | 0.7506          |  |
| Formic acid            | $13.9\pm4.2^{\text{A}}$                       | $30.5\pm16.6^{\rm A}$                            | $12.81\pm6.6^{\text{A}}$       | $23.4\pm23.4^{\texttt{a}}$ | 0.6247          |  |
| Propionic acid         | $2.4\pm0.9^{\text{B}}$                        | $3.1\pm0.5^{\scriptscriptstyle\rm B}$            | $5.2\pm0.6^{\rm A}$            | $5.3\pm0.9^{\rm A}$        | 0.037           |  |
| Alcohols               | $5.8 \pm 0.5^{A}$                             | $17.6 \pm 6.9^{A}$                               | $7.9 \pm 0.2^{A}$              | $18.0 \pm 6.4^{A}$         | 0.1209          |  |
| Methanol               |                                               |                                                  |                                |                            |                 |  |
| Aldehydes              | $\textbf{155.7} \pm \textbf{99.5}^{\text{A}}$ | 303.3 ± 236.0 <sup>A</sup>                       | 240.7 ± 145.5 <sup>A</sup>     | 350.6 ± 219.7 <sup>A</sup> | 0.7485          |  |
| Hydroxyacetaldehyde    | $144.8\pm99.6^{\rm A}$                        | $\textbf{277.3} \pm \textbf{234.8}^{\textbf{A}}$ | $225.0 \pm 151.2^{\mathrm{A}}$ | $315.9 \pm 219.8^{A}$      | 0.8107          |  |
| Acetaldehyde           | $1.0\pm1.0^{\text{A}}$                        | $3.7\pm0.9^{\text{A}}$                           | $4.0\pm3.9^{A}$                | $5.2\pm3.0^{\text{A}}$     | 0.4884          |  |
| Formaldehyde           | $9.9 \pm 1.0^{\rm C}$                         | $22.2\pm2.1^{\rm B}$                             | $11.8 \pm 1.7^{	ext{C}}$       | $29.4 \pm \mathbf{2.8^A}$  | 0.0018          |  |
| Ketones                | $33.4 \pm 11.1^{A}$                           | $44.2 \pm 20.8^{A}$                              | $59.0 \pm 19.8^{A}$            | $82.2 \pm 37.5^{A}$        | 0.3386          |  |
| 2-Propanone,1-hydroxy- |                                               |                                                  |                                |                            |                 |  |
| Furans                 | $5.1 \pm 0.2^{A}$                             | $4.0 \pm 0.1^{B}$                                | $1.8 \pm 0.2^{\circ}$          | $1.8 \pm 0.0^{\circ}$      | 0.001           |  |
| Furfural               |                                               |                                                  |                                |                            |                 |  |
| Sugars                 | $110.3 \pm 10.8^{A}$                          | $126.2 \pm 2.2^{A}$                              | $71.7 \pm 3.6^{B}$             | $87.4 \pm 24.2^{B}$        | 0.050           |  |
| Levoglucosan           |                                               |                                                  |                                |                            |                 |  |
| Aromatics              | $34.2 \pm 10.6^{A}$                           | $11.2 \pm 0.4^{B}$                               | $10.7 \pm 2.7^{B}$             | $9.4 \pm 0.6^{B}$          | 0.027           |  |
| Phenols                | $3.5\pm0.2^{\text{B}}$                        | $3.1\pm0.1^{\text{B}}$                           | $3.7\pm0.4^{\rm B}$            | $4.8\pm0.5^{\text{A}}$     | 0.002           |  |
| Guaiacols, syringols   | $30.7\pm10.8^{\text{A}}$                      | $8.1\pm0.3^{\text{B}}$                           | $7.1\pm3.0^{B}$                | $4.6\pm0.1^{\text{B}}$     | 0.028           |  |

Table 5 – Comparison between the chemical compositions (in dry basis) of the bio-oils and the aqueous fractions prepared. Results are expressed in mg/g as mean  $\pm$  standard deviation.


A, B and C in each row represent statistically different homogeneous groups for bio-oils and aqueous fractions with 95% confidence.

### **Bioscreen C toxicity assay screen**




Incubation in Bioscreen C (automated turbidimeter) at 30°C with shaking Growth curves at several inhibitor concentrations containing minimal medium with or without glucose. *P. putida* can not use formate and furfural as a carbon source.

## **Basis for this project: Biological Funneling**



#### Biological Funneling Cultivations on APL from Lignin Utilization Project in BC Platform



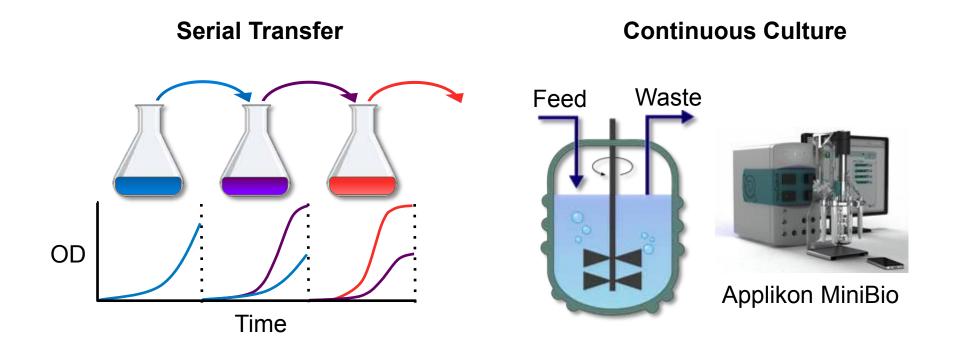
Biological Funneling enables conversion of ligninderived aromatics into value-added compounds

- Demonstrated *mcl*-PHA production in *Pseudomonas putida* KT2440 on alkaline pretreated liquor
- Leveraging this work from another BETO-funded project as the basis for Biological Pyrolysis Oil Upgrading including the model organism and initial target product (*mcl*-PHAs)

HA6

HA-8

HA-12


HA-10

Hydroxy acids

HA14

# **Adaptive Laboratory Evolution (ALE)**

Currently ramping up efforts in adaptive laboratory evolution (ALE) with native and engineered strains of *P. putida* KT2440 for increased microbial resistance

