@ University of Colorado
Boulder

Microbial Electrochemical Technology (MxCs):
Challenges and Opportunities

Zhiyong “Jason” Ren,
Associate Professor,

Dept. of Civil, Environmental, and Architectural Engineering
University of Colorado Boulder

Jason.Ren@colorado.edu
http://spot.colorado.edu/~zhre0706
Phone: 303-492-4137




MXxC is a platform technology that integrates
microbiology, electrochemistry, materials science,
engineering, and many related areas together
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Using the electrons generated from biodegradable materials, many
functions have been developed using the MxC platform

Main type of MxCs Products
Microbial Fuel Cell (MFC) Electricity
Microbial Electrolysis Cell (MEC) H,, H,0,, NaOH, Struvite, etc.
— mainly inorganic chemicals
Microbial Electrosynthesis (MES) CH,, CH,COOH, C,H;OH, lipid, etc.
- mainly organic chemicals
Microbial Desalination Cell (MDC) Desalinated water, in combination with
other functions

MxC combined with other systems

MxC + membrane bioreactor (MBR)

MxC + capacitive deionization (CDI)

MxC + photobioreactor (PBR)

MxC + reverse electrodialysis (RED)

MxC + forward osmosis/pressure retarded osmosis (FO/PRO)




An MFC produces direct current from biodegradable
materials
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An MEC produces H, or other chemicals with the
assistance of a small external voltage
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Microbial Interactions with the MxC Electrodes
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Current Wastewater Treatment Process is
Energy Intensive and Carbon Positive

Current Wastewater Industry consumes high energy and emits net CO,
-Consumes 22 Terawatt hour of electricity every year, ~ 3% of the total

U.S. electrical energy load (= ~ 2.2 million household annual use)

-Emits 0.75 GigaTonnes of CO,-equivalent, ~ 1.5% of the global

greenhouse gas emissions (= ~ 260 million tonnes of coal burn)
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MxCs for energy-neutral or energy-positive wastewater
treatment (examples)

1. MFC accomplished similar COD removal as coD
aeration (>95%) and higher removal than 1200 o
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1. MEC obtained a H, production rate 2.27 m’ : ¢
H,/m?/d, with H, recovery of 91% from |
industrial wastewater.

2. Energy efficiency relative to the electrical
input was 251%.

3. COD removal was higher than 85%. s Cathode

(Huggins et al,, J Microb Biochem Technol, 2013, Lu et al, 2015) 8



Two ways of scaling up MxCs — integrate into the tanks
or modular device development

1. MFC in 10 m3 aeration tank, Jin & Ren,
2012

2. Pluggable MFC for Septic tank retrofit,
Yazdi et al, Bioresour. Technol. 2015

1. Spiral wound MCDC (0.5 gpm) for oil/gas
wastewater; Haeger, et al, 2014

2. Modular MEC (1 m3) for winery wastewater;
Cusick, et al, 2011

3. Frame-n-plate MDC (60 L) for municipal 9
wastewater; Liang et al, 2015



MxC Challenges

Treatment Challenges

- Reduced performance in high/low
BOD wastewater

- May not meet BOD/SS discharge
standard alone

- Slower rate than aerobic treatment

Energy/Product Generation
Challenges

- Low and unstable energy output
from real wastewater

- Difficult to stack and scale

- Best usage of the products

COST

- Reactor architecture

- Materials

- Microbial community

- Product harvesting, storage, and
utilization

Development Opportunities

- Combine with other processes as
pre- or post treatment to deal with
different influent and effluent
quality needs

- Develop energy harvesting
systems to stabilize and
modularize energy harvesting

- Conduct quantitative studies to
understand application niche of
MxCs

- Product driven development

- Cost driven development

- Market driven development

- Sustainability driven development



Low and unstable energy output from real wastewater
due to wastewater intrinsic characteristics

Low conductivity and buffer capacity of WW

Limits ion transfer in MFC, resulting low power output and pH imbalance

!

Power from the same reactor
Acetate w/ buffer — 68 W/m? (20 mS/cm)
WW w/o buffer — 5.1 W/m? (1-2 mS/cm)

!

Two-chamber spacer / sandwich design to
improve ion transfer and reduce internal
resistance

— too many parts, imbalanced surface
area, and short circuiting

!

pH without buffer addition

Anode pH — drops from ~7 to ~5
Cathode pH - increases from ~7 to ~11

!

Single-chamber air cathode to minimize
pH imbalance and reduce cost

— Difficult and expensive to make,
leaking as a major problem

et |
S

T
W,
3
i
\

— ¥

Fan et al, 2012; Rabaey et al, 2008 11



Low and unstable energy output from real wastewater
due to wastewater intrinsic characteristics
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Electrical Energy Harvesting System Increases MxCs Performance
and Simplifies Engineering Scale-ups
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Rather than passively receiving electrons from
bacteria on the anode, active energy harvesting
can

1. Track real-time anode capability and
maximize energy extraction — preliminary
results showed 20 times increase in energy
production.

2. Stacking simple electrical circuits rather
than bulky MFC units can prevent voltage
reversal —a major problem in MxCs.

3. Using circuits to control current harvesting
can stabilize MxCs output for stable energy
and product generation.

4. The active harvesting approach also posts a
selective pressure for more efficient electron
transfer and community structure.

05 L0 15 2.0 2.5 3.0 (Wang, Park, and Ren, Environ. Sci. Technol. 2012, 2015)
Current [mA] (Park and Ren, J. Power Sources., 2012, 2012, 2013) 13



Spiral Wound Configuration MxC

- Compact and modular design flexible for different scales

- High and matched surface areas between anode and cathode (350-700 m?/m?)
provides high power output without using catalysts

- Reduces leaking problems faced by cubic and tubular designs

- Easily adaptable by current manufacturing infrastructure
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Microbial capacitive desalination kills 3 birds with 1 stone
- Organic removal, Salt removal, Energy/Chemical production
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MCD was a Market Driven Research —

received industry supports
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University of Colorado researching microbe treatments for fracking
wastewater

University of Colorado scientists are developing a microbe based

to remove salt and organic contaminants from fracking
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55 billion (£3 billion) is the estimated annual cost for disposing of contaminated water produced during shale

gas extraction. Now, researchers in the US have developed a new technology that could reduce the cost
of dealing with this water by 30-40%.

Hydraulic fracturing, the process used to extract oil and gas from underground rock formations, produces
over 20 billion barrels of contaminated water every year. Current methods, such as underground injection, to
dispose of these vast quantities of contaminated water have risks. including a chance of initiating
earthquakes. Reuse of this water avoids disposal issues. but requires multiple treatment processes to
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MES can produce 1-2 carbon organics but more research are
needed on longer-chain hydrocarbons

CHAIN ELONGATION PATHWAYS IN ANAEROBIC MICROBIOMES
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