

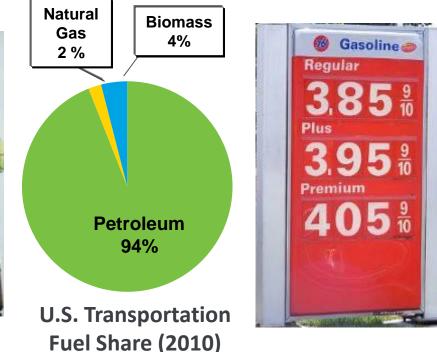
Energy Efficiency & Renewable Energy

Overview of the U.S. DOE Vehicle Technologies Program

Patrick B. Davis Program Manager

Office of the Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy

18TH CONFERENCE ON ENGINE-EFFICIENCY AND EMISSIONS RESEARCH October 15-19, 2012 HYATT REGENCY DEARBORN | DEARBORN, MICHIGAN



Transportation is Highly Dependent on Oil

Energy Efficiency & Renewable Energy

- Transportation is responsible for over 2/3 of our petroleum usage
- On-road vehicles responsible for ~80% of transportation petroleum usage
- About 1/3 of U.S. GHG emissions from transportation

Oil Dependency

World Oil Production

Has Grown Slowly

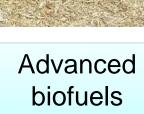
2005: 84.58 mbpd 2006: 84.54 mbpd 2007: 84.40 mbpd 2008: 85.37 mbpd 2009: 84.24 mbpd 2010: 87.30 mbpd 2011: 88.40 mbpd

• Economic security

- Energy security
- Environmental Stewardship

The Cost of Oil is Not Just Monetary

U.S. DOE/EERE Is Investing in Five Main Technologies


Energy Efficiency & Renewable Energy



ICEs

Hydrogen fuel cells

gas

Vehicle Technologies Program

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Batteries and Electric Drive

- Advanced Batteries
- Advanced Power Electronics,
- Electric Motors & Traction Drive Systems

VSST

- Validation
- Aerodynamics, Rolling Resistance & Accessory Loads
- Modeling
- Codes & Standards

Materials Technology

- Lightweight low cost structural composites
- Lightweight metals improved properties, processing, cost
- Predictive tools
- Multimaterial enabling: joining, corrosion
- Materials enabling higher efficiency propulsion systems

FY 2012 Budget - \$330M

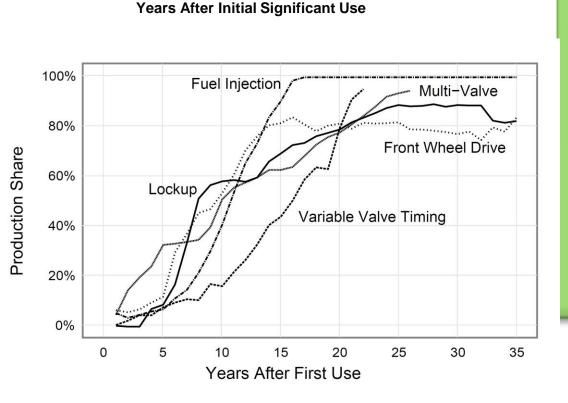
Advanced Combustion Engine R&D

- Combustion R&D (low temperature combustion, leanburn, direct injection)
- Emission Controls and Aftertreatment
- Light- & Heavy-Duty Engine
 Efficiency
- Solid State Energy Conversion

Outreach, Deployment and Analysis

- Deployment Clean Cities
- EPAct/EISA
- Rulemaking
- Student Competitions
- Graduate Automotive
 Technology Education

Fuels Technology


- Drop-In Biofuels
- Clean/Efficient Combustion Fuel Characteristics
- Synthetic/Fischer-Tropsch Fuels
- Advanced Lubricants

Realizing Benefits of Vehicle Technology Takes Time

Industry-wide Car Technology Penetration

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

U.S. Vehicle Market

- About 240 million light-duty vehicles on the road
- Approximately 12.7M new cars & light trucks sold in 2011; ~11M sold through September for 2012.
- Hybrid vehicles at 3% of sales
- Sales of plug-ins showing significant growth

It has taken about 15 – 20 years for a technology to reach maximum market penetration.

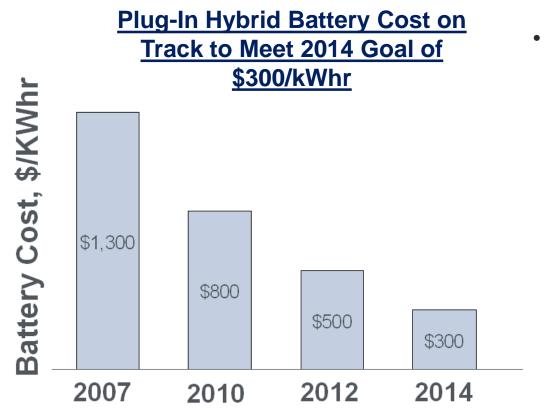
Light-Duty Automotive Technology and Fuel Economy Trends: <u>1975 Through 2011</u>, EPA420-R-10-023, 2012, p. 72

EV Everywhere Grand Challenge

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Goal: Enable U.S. companies to produce electric drive vehicles that are as affordable and convenient for the average American family as today's gas-powered vehicles within the next 10 years (by 2022).


- Midsize sedan, majority of miles driven on electricity,
- < 5 year payback
- Sufficient range and fast charge capability for widespread adoption
- EV-Everywhere Framing Document is under development.
- Stakeholder workshops have been completed
- Roll Out of Initiative details
 expected in the Fall 2012

Battery R&D

Future Direction

- Emphasize cost reduction, durability, safety, and increased specific energy:
 - Innovative development efforts and manufacturing improvements with potential to reach cost goals.
 - Continue development of high voltage, high capacity cathodes and high voltage electrolytes
 - Develop Silicon Composite & Metal alloy materials and cells
 - Expand focus on beyond-Lithium-ion technology

Goal: By 2015, reduce the cost of a PHEV40 battery to \$300/kWh; to \$150/kWh by 2020

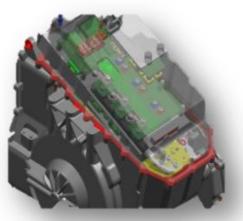
Status:

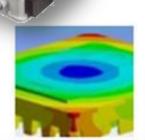
- On track to meet cost target of \$500/kWh in FY12.
- Calendar life up to 10-15 years
- Cycle life between 3,000-5,000 deep discharges

Vehicle Technologies Program

Advanced Power Electronics and Electric Motors R&D

U.S. DEPARTMENT OF


Energy Efficiency & Renewable Energy


Accomplishments

- Integrated Electric Traction System (ETS) developed with GM exceeded 2010 R&D targets
- Assessed 29 technologies; filed 41 patents
- Working with suppliers, detailed component specifications were developed which led to lower cost components and increased available supplier base

•	2010	GM
Cost \$ //JN	<19	<16
Cost, \$/kW	<19	<16
Specific power, kW/kg	>1.06	>3
Power density, kW/L	>2.6	>5
Efficiency	>90%	>90%

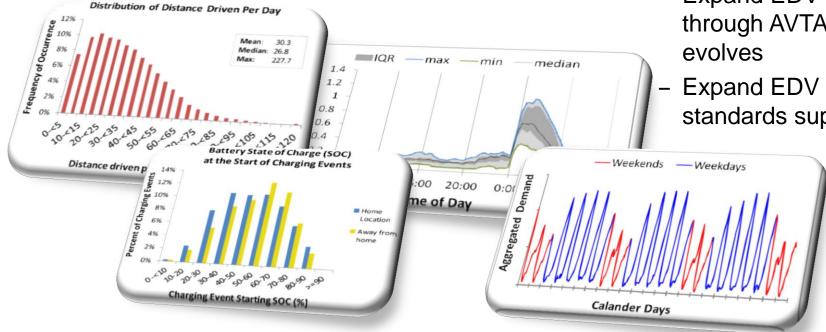
Goal: By 2015, reduce cost of technologies for electric traction drive to \$12/kW; and to \$8/kW by 2020.

Future Direction

- Emphasize cost reduction of electric traction drive systems:
 - Non-rare earth motors
 - Wide bandgap based designs to increase switching frequency, efficiency, and operating temperature
 - Manufacturability
 - Thermal management
 - Reliability

Status:

- On track to meet cost target of \$17/kW in FY12
- Met cost target of \$18/kW in FY11
- Achieved FY10 traction drive system cost goal - GM traction drive system development

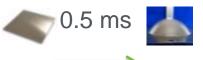

Vehicle & Systems Simulation & Testing

- Use data on 13,000 vehicles and 20,000 charging locations:
 - 130,000 PHEV/EV test miles and 5,000 charging events documented each day
 - Full details of every charging event and vehicle trip are captured
 - http://avt.inel.gov/index.shtml

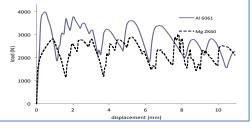
Future Direction

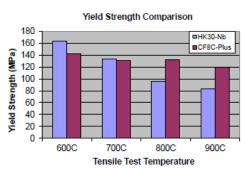
- Support electric-drive vehicle (EDV) market transformation:
 - Wireless Charging RD&D
 - Auxiliary load reduction / Advanced HVAC RD&D
 - Expand EDV evaluations through AVTA as market evolves
 - Expand EDV codes & standards support

Materials Technology



Accomplishments


- Multimaterial joining Mg laserassisted self piercing rivet and friction stir weld (USAMP)
- Room temperatures processing of Al alloys lowers cost -Pulse pressure forming enables 2.5x to 6x increase in safe strains (PNNL)
- Non-Rare Earth Mg alloy provides good properties using domestically available materials
 - Significantly improve crash energy absorption (PNNL)
- Propulsion Material- SS alloy provides greater strength at higher temperatures (>750C), and lower cost by 33% (ORNL/Honeywell)


Joining demonstration: laser assisted (left) self piercing rivet and FSW (right)

AI RT Pulse Pressure Forming

Mg alloy with comparable crash energy to Al with 20% weight savings

Future Directions

- Predictive modeling of carbon fiber composites
- Predictive modeling of advanced steels
- Advanced alloy development for automotive and heavyduty engines

Goals:

By 2015, validate costeffective weight reduction of body and chassis systems by 50%

By 2016, develop pathway to 10% weight reduction in HDV suspension

Fuels Technology

Accomplishments

- Initiated new industry and university R&D efforts:
 - Longer lifted-flame combustion
 - Expansion of RCCI engine operations
 - Reduced-friction, advanced base engine oils
 - Supplementary alcohol injection for improved combustion efficiency
- Completed 4-year testing program on intermediate ethanol-gasoline blends.
- Co-funded, with California state agencies, development of 3 medium-duty CNG engines.

Goal:

By 2015, demonstrate cost effective lubricant with 2% fuel economy improvement

Future Direction

- Increase emphasis on lubricant research:
 - Develop retrofittable low-friction lubes for use as drop-in replacement in existing vehicle engines
- Expand understanding and exploitation of fuel-controlled combustion
 - Example: RCCI
- Continue fit-for-service evaluations
 of candidate "drop-in" biofuels

Status:

Demonstrated greater-than-50% reduction in boundary friction in bench-top tests

VTP Deployment – Clean Cities (leveraging people & resources)

U.S. DEPARTMENT OF Ener

Energy Efficiency & Renewable Energy

Accomplishments

- Saved nearly 4 billion gallons of petroleum (GGE) since 1993
- Created the National Clean Fleets
 Partnership with 20 large fleets
- Recent awards helped deploy over 1,500 stations and 8,500 vehicles

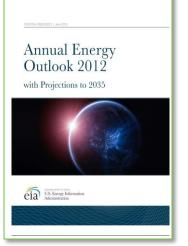
Future Direction

- Remove barriers and accelerate deployment of alt-fuel vehicles
- Focus on community readiness and sustainability, policy development, and removing market barriers

Clean Cities Coalitions

Near to Mid-term Opportunity for Reducing Transportation Oil Use

"The performance, low cost, and fuel flexibility of ICEs makes it likely that they will continue to dominate the vehicle fleet for at least the next several decades. ICE improvements can also be applied to both hybrid electric vehicles (HEVs) and vehicles that use alternative hydrocarbon fuels." DOE QTR 2011¹

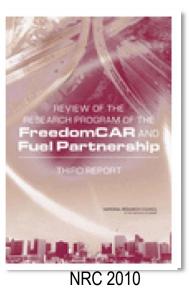

"...The internal combustion engine will be the dominant prime mover for light-duty vehicles for many years, probably decades ..." NRC Report 2010²

The EIA AEO 2012 reference case scenario projects that even by 2035, 99% of light- and heavy-duty vehicles sold will have ICEs.³

¹ Quadrennial Technology Review, DOE 2011


² Review of the Research Program of the FreedomCAR and Fuel Partnership: 3rd Report, NRC 2010

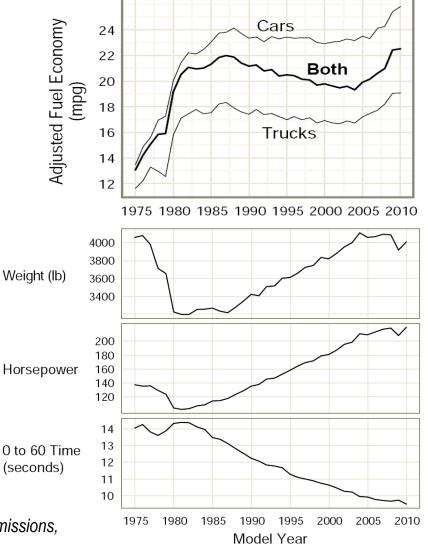
³ Energy Information Agency, *Annual Energy Outlook 2012*, June 2012.


U.S. DEPARTMENT OF

EIA/AEO 2012

Energy Efficiency & Renewable Energy

DOE 2011



Passenger Vehicle Fuel Economy Trends

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

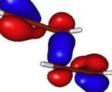
Improvements in internal combustion engine performance (increased horsepower with smaller engines, reduced 0 - 60mph acceleration time) largely responsible for maintaining or increasing vehicle fuel economy in spite of increases in vehicle weight and size

Source: Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 through 2011, EPA 2012.

Advanced Combustion Engine R&D

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

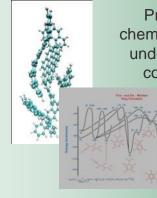

Basic Science

BES Sustained support in 2 areas

Development of predictive chemistry in model flames

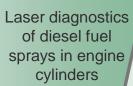
Computational kinetics and experiments

Advance laser diagnostics applied to model flames



Laser-based chemical imaging

Applied R&D


→ EERE/VT/ACE R&D →

Applications of chemistry and diagnostics to engines

Predictive chemical models under realistic conditions

Laser dia of dies sprays in cvlin

Manufacturing/ Commercialization

Cummins and Dodge

Cummins used simulation tools and improved understanding of diesel fuel sprays to design a new diesel engine with reduced development time and cost and improved fuel efficiency.

ISB 6.7 liter Cummins diesel engine first marketed in the 2007 Dodge Ram pickup truck; more than 100,000 sold/year

Advanced Combustion Engine R&D

Energy Efficiency & Renewable Energy

Accomplishments

- Demonstrated pathway to combustion that could improve passenger vehicle fuel economy by over 50%. (SNL, UW)
- Demonstrated diesel-like efficiencies and low emissions on gasoline. (ANL)
- Ford's 2011 Super Duty diesel pickup truck utilizes DOE supported emission control technology.
- Heavy-duty multi-cylinder engine w/bottoming cycle reached 49% brake thermal efficiency.
- 1st gen. thermoelectric generators produced over 500 Watts on vehicle tests. (GenTherm)

Future Direction

U.S. DEPARTMENT OF

- High-efficiency low temperature combustion technologies and leanburn gasoline.
- Simulation codes that reduce design iterations and engineering design tools for validation of simulation models.
- Increase efficiency of NOx, PM and HC emission control systems focusing on low-cost base metal catalysts.
- High efficiency thermoelectric generators to improve vehicle fuel economy.

Goals:

Passenger Vehicles: By 2015, improve gasoline vehicle fuel economy by 25%, diesel vehicle fuel economy by 40%, compared to 2009 baseline; 35% and 50% improvements by 2020.

Commercial Vehicles: By 2015, improve commercial diesel engine efficiency by >20% compared to 2009 baseline, 30% by 2020.

SuperTruck Initiative at Halfway Point

Energy Efficiency & Renewable Energy

Status of 50% engine efficiency:

- 49% engine efficiency has been demonstrated
- Additional technologies identified
- Component tests being conducted

SuperTruck Concept

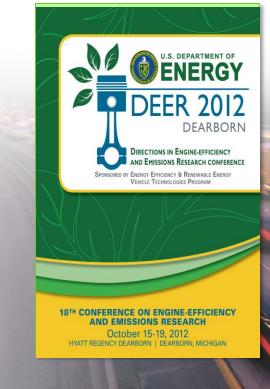
Status of 50% freight efficiency improvement:

- First generation demonstration tractors completed
- Aerodynamic designs for trailers completed
- Additional sub-systems including parallel hybrid, auxiliary power units, etc. developed and under test

Goals:

- Demonstrate 50% engine efficiency at 65 mph and a pathway to 55%.
- Increase overall freight efficiency by 50% measured in ton-miles per gallon

Participants: Cummins, Daimler, Navistar, and Volvo


2012 DEER Conference

Energy Efficiency & Renewable Energy

The Premier International Engine Technology Conference: Featuring High-Level Speakers, Peer-Selected Papers, and Exhibits

- Grown from 50 attendees in 1993 to over 900 attendees each year since 2009.
- About 70 technical presentation over three days and over 50 poster presentations highlighting recent advances in engine technology.
- Ride and Drive of advanced technology vehicles.
- Provides opportunity for networking.
- DEER 2012 is 18th in the series.

ENERGY Energy Renew

Energy Efficiency & Renewable Energy

Patrick Davis Program Manager patrick.davis@ee.doe.gov

www.vehicles.energy.gov