HYDROGEN ENERGY STORAGE FOR GRID & TRANSPORTATION SERVICES

May 14, 2014

Presented by: David Teichroeb Business Development, Alternative & Emerging Technology

Enbridge Inc.

Enbridge Footprint

- Worlds largest liquid pipeline operation
- Canada's largest natural gas distribution company
- Electricity transmission
- Approximately \$4 billion in green and alternative energy, including:
 - More than 1800 MW of wind and solar
 - Includes geothermal power, run of river hydro, heat to power
 - Investments in multiple energy storage technologies

Flexibility of Power-to-Gas

Power-to-Gas converts surplus non-emitting power into renewable fuel, power or heat *when and where* it is needed

Power-to-Gas Solution

Smart Energy Grids Interconnect Wires, **Pipelines and Refineries for Flexibility**

- Consumer Benefit low marginal cost of pipeline storage
- Power-to-Gas offers more than a thimbleful of storage; > 1330 TWh across North America

*É***ENBRIDGE**

Alberta's Market Highlights Need for Bulk, Long-Duration Energy Storage

Alberta Distribution of Hourly Prices - 2012

Challenge – how to grow wind

- Significant low-priced power periods mixed with times of high volatility
- Power is only 14% of energy enduse
- Higher wind penetration depresses pool price / wind economics

Power-to-Gas a Possible Solution

- Natural Gas and Hydrogen end-use significantly larger than electricity
- ISO signals electrolyser to stabilize power grid and pipelines act at a renewable relief valve
- Equivalent of adding new export inter-tie capacity in Alberta system
- <u>Never bring energy back to Power</u>

Typical Alberta Supply Merit Order Curve

Power-to-Gas at Utility / Refining Scale

Technology is a price responsive load, offers fast-acting (Regulation) services to ISO, and simultaneous bulk, long-duration energy storage or, renewable integration into new energy markets

Compact 60 m x 25 m footprint for 40 MW Power-to-Gas Plant

Image Source: Hydrogenics

Base Load, Low-Carbon Hydrogen via Electricity and Natural Gas Integration

- Atlantic Hydrogen Carbon Saver Technology
 - 1500 kg / day hydrogen production facility in St. John, New Brunswick

Electricity and natural gas combined to produce two high-value products:

- Hydrogen for oil refining, transportation fuel, HENG, etc.
- Industrial Carbon for steel production, rubber goods, etc.

Comparing Renewables Delivered by Wire & Pipeline (Ontario, Canada Data)

Current Development Activity

- Enbridge and Hydrogenics developing Ontario pilot
 - 2 MW design rating; 25% overdrive capability
 - Ontario RFP for Energy Storage (Regulation) one possible contract path – others are emerging
 - Objective: Validate 80% + system efficiency for energy delivered into natural gas pipeline network
 - If average power supply mix has less GHG's than CCGT; supply energy to consumers as green gas
- Targeting construction 2014-2015 with renewable hydrogen injection into natural gas pipeline system
- Screening for Alberta host site; 5 -10 MW Power-to-Gas project; U.S. developments also underway
- Future scale; 5 to 50 MW distributed systems
- Advocating for market rules that support storage investments in North American markets
- Building support for pan-North American gas quality and hydrogen interchangeability standards for NG pipelines

Hydrogenics Electrolyzer

Underground Gas Storage

Supportive Policy & Market Rules Required to Smooth Adoption of Power-to-Gas

- 1. Energy policies, RECs and RPS objectives should consider least-cost solutions for more efficient use of existing infrastructure / energy corridors (wires and pipes)
- 2. Energy storage, including Power-to-Gas, must be a wholesale transaction for input energy purchases (i.e. cannot buy retail sell wholesale)
- 3. Consider how Power-to-Gas linked with renewables could provide alternatives for refiners to meet low-carbon fuel standards (i.e. renewable hydrogen as an alternative to biofuel/ethanol mandates)
- 4. Consider carbon abatement efficiency vs. round trip electricity efficiencies
 - As the power grid carbon intensities reduces, it will be increasingly important to ensure energy storage is achieving actual emission reductions
 - Round-trip evaluations need to consider wholesale energy into storage and its subsequent delivery to consumers, regardless of end-use (i.e. renewables by pipe)
- 5. Renewable hydrogen for refining can be supportive of wind growth
- 6. Scale of gas storage can offer a price responsive, alternative market for wind developers if green gas is part of RPS mandates (e.g. California's AB32)
- 7. Energy regulators and policy makers should identify ways to encourage the pipeline industry's adoption of gas quality standards for initial levels of hydrogen blending

david.teichroeb@enbridge.com 647-393-1894 (cell)

Backup Slides

Investing in Multiple Storage Technologies

Source: Hydrogenics 2MW Power-to-Gas Project in Germany

Hydrogenics, Mississauga, Ont.

- Electricity Storage with Hydrogen
- Power-to-Gas uses hydrogen electrolyzers for bulk storage of surplus renewable power
- Store renewable hydrogen in natural gas grid
- Grid stabilization and integration of renewables

Temporal Power, Mississauga, Ont.

- Flywheel Energy Storage
- Flywheels enable correction of short-duration power imbalances
- Mechanical battery storing kinetic energy
- Renewable integration and system regulation

Different Needs Require Different Solutions

- No single storage solution will meet all requirements
- Long-duration storage with hydrogen opens new opportunities

Source: International Gas Union Research Conference 2011, Abstract from Dr. Gerald Linked

The Future Power-to-Gas Story

Source: Hydrogenics and Project Collaborators; ("BioCat") Project in Denmark

Benefits to Electricity & Natural Gas Sectors

Real Operational & Consumer Benefits, but Contracting Silos Exist in Most Market Rules 17

Flexible Energy Infrastructure by Integrating Pipelines & Wires

Significant Energy Storage Exists Today

- Canada already has over 800 billion cubic feet (0.8 Tcf) of underground gas storage
 - Canada's natural gas system stores equivalent of 234 TWh
 - This is over 40% of annual electricity use
- United States has approximately 4 Tcf of underground gas storage
 - Gas cavern storage stores equivalent of 1100 TWh
 - ~ 30% of the total 2011 U.S. electricity consumption
- At 5% hydrogen by volume blending, the existing North American natural gas storage can offer > 66 TWh of storage – the only incremental costs is the electrolyser

Modeling of GHG Reductions Based on Power-to-Gas Output Supplying Different End-Use Markets

Scenarios	GHG Reductions 2013-2022 (10 years)	GHG Reductions 2013-2032 (20 years)	GHG Reductions 2013-2050 (37 years)	
	kilotonnes	kilotonnes	kilotonnes	
1. Hydrogen Production for Upgrading	1,070	2,888	7,680	
2. Natural Gas Offset (regardless of end-use)	830	2,238	5,952	
3. Electricity Generation Offset	971	2,620	6,968	

- Assumptions:
 - Market penetration based on AESO's current projected wind capacity in Alberta.
 - Wind capacity factor of 32% which is based on actual performance from 2008-2012
 - Electrolyzers store (charges) for 63% of the time
 - based on the availability of wind power at \$40/MWh or less (between 2009-2011)
 - Assumes electrolysers capacity is 5% of markets installed wind capacity