

Towards sustainable energy systems – The role of large scale hydrogen storage in Germany

May 14th, 2014 | Sacramento

Dr. Hanno Butsch | Head of International Cooperation NOW GmbH National Organization Hydrogen and Fuel Cell Technology

Political background for the transition to renewable energies

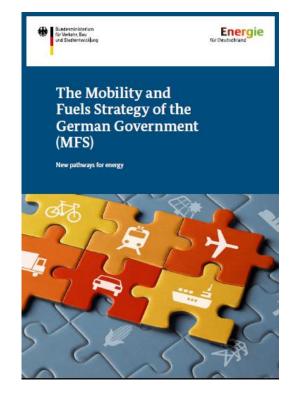
Three reasons why it is inevitable to change the energy system in Germany:

Climate protection: Global responsibility for the next generation.

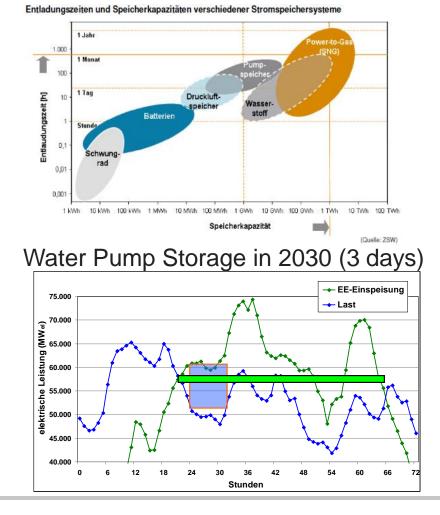
• Energy security: More independency from fossil fuels.

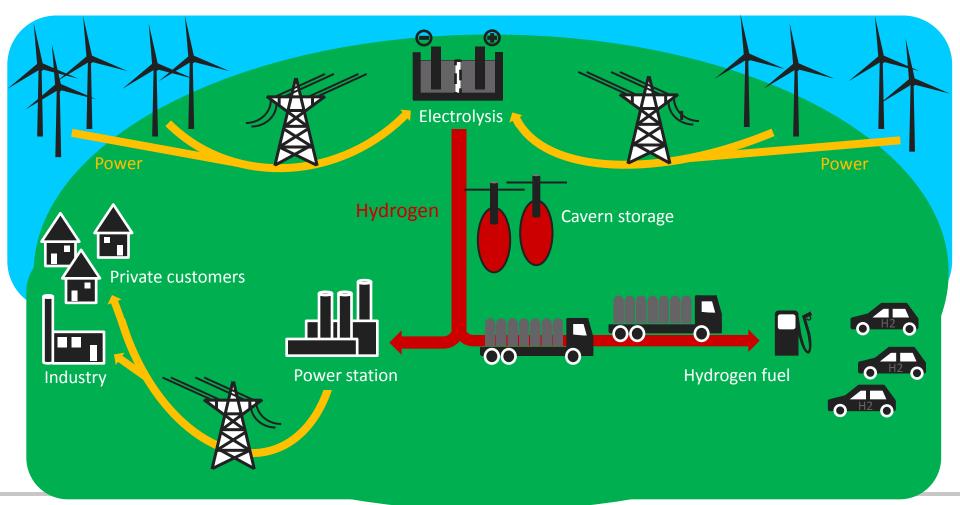

• Securing the economy: Creating new markets and jobs through innovations.

Political Climate and Energy Targets for Germany¹

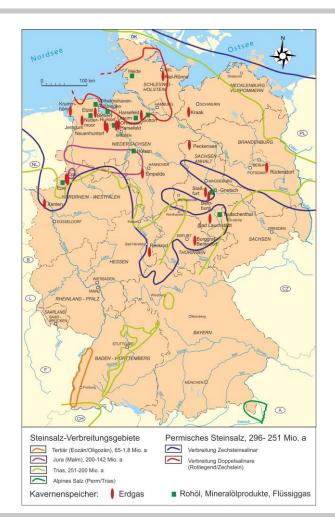

- Reducing GHG across all sectors (1990 baseline): 40% by 2010 → 80% by 2050 Share of renewable energies of the gross final energy consumption: 18% by 2020 → 60% by 2050 The share of renewable energies for the electric power supply: 40-45% by 2025 → 55-60% by 2035 Reducing primary energy consumption: 20% by 2020 → 50% by 2050. Increase of Energy productivity: 2.1% per year compared to final energy consumption. Decrease of electricity consumption (baseline 2008):
 - 10% by 2020 → 25% by 2050
- **Compared to 2008, heat demand in buildings** is to be reduced by 20% by 2020, while primary energy demand is to fall by 80% by 2050.

Political Framework for the Transport Sector


- Share of transport in final energy consumption nearly 30%
- Tripling of energy consumption in transport since 1960, even five-fold increase in road traffic
- Goals of the German Energy Concept (2010) for Transport:
 - about -10 % until 2020 of energy consumption
 - about -40 % until 2050 of energy consumption (vs. 2005)
- The Mobility and Fuels Strategy of the German Government² outlines the way how to achieve these objectives.
- Electrification of the drive train (BEV's and FCEV's) is an key issue to reach the targets!
- → Targets only achievable with PtG-H2 and PtG-Methane.
- → Further increase of RE then planned.
- →Large scale storage for Hydrogen is inevitable.


Hydrogen as storage medium for volatile energies

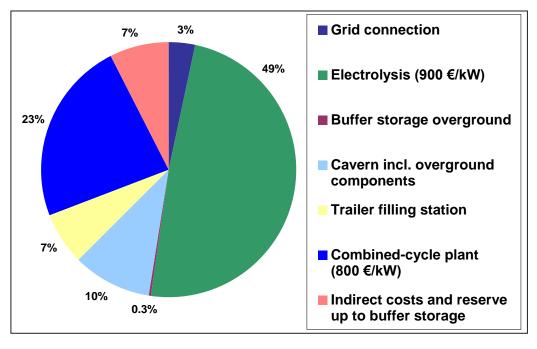
- With the increasing share of renewable energies (80% by 2050) the need for energy storage increases as well.
- Excess energy from renewable energys:
 - 2012 500 GWh
 - 2030 14 TWh
 - 2050 40-50 TWh
- ➔ Hydrogen has to play a major role to store the excess energy of volatile energy sources.


Utilise Surplus Wind Energy via Hydrogen in the Northern Part of Germany

Availability of salt caverns in Germany

- Geological opportunities for salt caverns only in the northern part of Germany.
- Highest share of wind energy in the northern part of Germany
- Lack of grid connection between north and south.
- → Storing the excess wind energy in the northern part is crucial.

Key Facts of the assumed Salt-Cavern Storage


Storage assumptions:

- Volume: 500.000 m³
- Working gas: 4000 t H2
- Working pressure: 58 -175 bar
- Max. Output: 13,5 t/h (450 MW)
- Charge: 16 days (empty)
- Discharge: 12 days

Technical assumtions:

- η-Electrolyser: 70%
- η**-**GuD : 60%
- Electrolyser: 900 €/kW
- GuD: 600 €/kW

Investment: 923 million €

• Deprecation at 8% over 30 years (combined cycle plant 20 years)

→ 110 million €/year for annuity and fixed operating & maintenance costs

Results of the Scenario 2 in the North/East-Part

Fall	"weniger Kraftstoff"	"Standard Nordost"	Investition GuD 600 €/kW statt 800 €/kW	GT statt GuD, Investition 504 €/kW	Investition Elektrolyse 700 €/kW statt 900 €/kW	Investition Elektrolyse 500 €/kW statt 900 €/kW	preis- gesteuert
Stunden Elektrolyse	3.052	3.052	3.052	3.052	3.052	3.052	5.600
Menge / Jahr	32.044	32.044	32.044	32.044	32.044	32.044	59.100
Anteil Rückverstr.	38%	7%	7%	7%	7%	7%	39%
	notwendiger spezifischer Erlös €/kg H₂-Kraftstoff						
Spotmarkt (0 €/MWh)	3,71	2,92	2,74	2,56	2,50	2,08	1,55
40 €/MWh	6,80	5,00	4,82	4,49	4,58	4,16	
80 €/MWh	9,90	7,08	6,90	6,43	6,66	6,24	

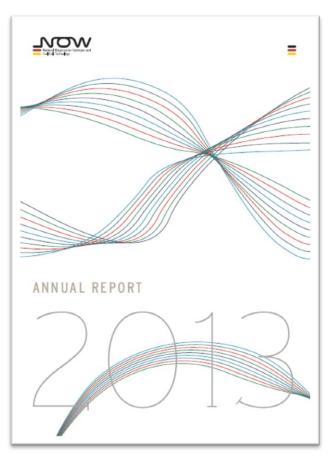
Conclusion

Outcomes:

- Geological and technically large scale salt cavern storage is possible in Germany.
- There are business case for a profitable operation of the hydrogen storage plant if not only excess energy is used for the electrolyzer.
- Selling hydrogen as a fuel for transport is in the most cases the most profitable way to go.

Challenges:

- →Reducing cost of the electrolyzer
- Creating a positive regulatory environment (e.g. exemption of grid fee for electolyzer power, RE-contribution, energy tax, H2 injection into the NG grid)
- → First small demonstration projects have to be started soon.
- →Defining a clear PtG-roadmap for Germany
- →Increase the share of RE in order to achieve the climate targets for transport.



Thank you very much!

Dr. Hanno Butsch Head of International Cooperation

NOW GmbH National Organization Hydrogen and Fuel Cell Technology

Fasanenstrasse 5, 10623 Berlin, Germany

download: www.now-gmbh.de

Back-up

Wind Hydrogen Project RH₂ -WKA

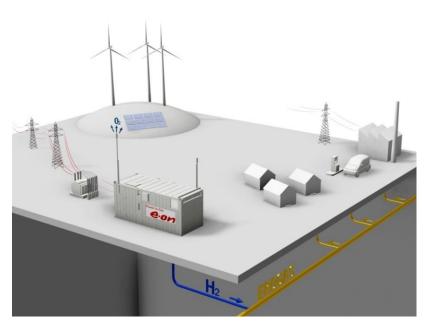
Renewable Hydrogen- Werder/Kessin/Altentreptow

Demonstration of Wind-H₂- System

- conception, construction and operation
- electricity supply for wind power plants at times of calm

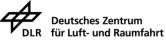
plant design

ground-breaking ceremony July 2011

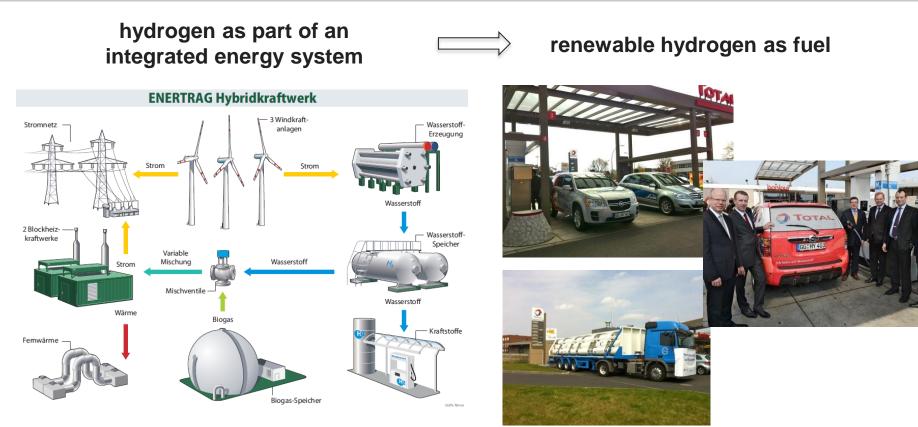


start of trial H₂-production December 2012

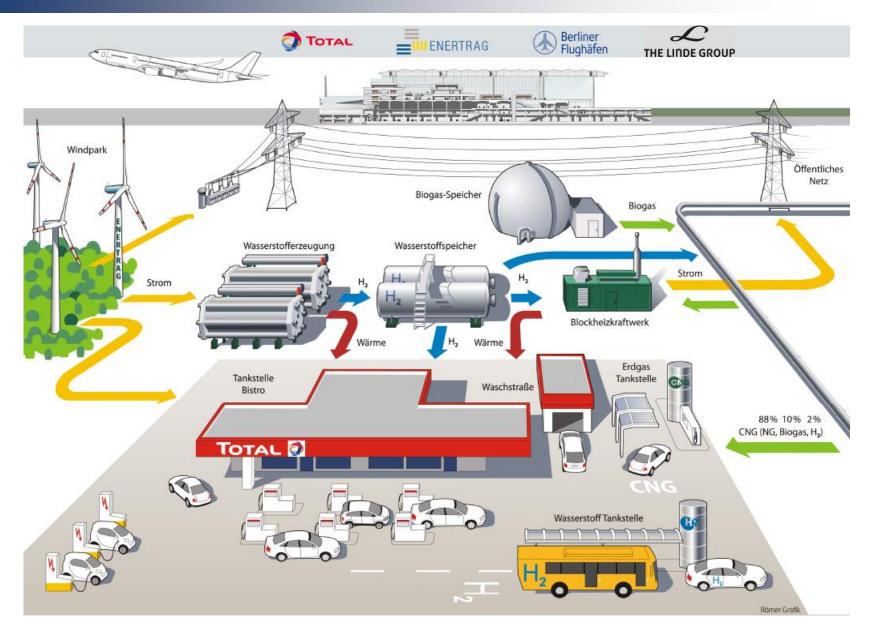
Project "Power-to-Gas for Hamburg"


- 1MW PEM-electrolyzer
- injection of H₂ into natural gas grid

ground-breaking ceremony June 2013



Demonstrating Wind-Hydrogen for Mobility


Enertrag: Hybrid Power Plant

Total: Refueling Station at Heidestr., Berlin First delievery of wind-hydrogen on April 18t^h, 2012

BER – Multienergy filling station

ENCON.Europe GmbH

Possible political support

H, Mobili'

support measure

- 1. Liberalize power for electrolyzes from feed-in tariff allocation
- 2. On-top bonus (per kWh) in case of re-submitting power to the grid
- 3. Feed-in tariff for hydrogen from renewable energies when fed in NG-grid
- 4. Consider hydrogen in biofuels quota
- 5. tax exemption for hydrogen as fuel
- 6. subsidies / loans for hydrogen infrastructure buildup
- 7. Early mover protection / license model
- 8. Public procurement initiative for zero emission vehicles / FCV
- 9. Ensure continuous R&D basis

Energy law

- Energy tax costs (EEG-Cost allocation; electricity tax; etc.)
- Feed in payment for Biomass will be lost in combination with hydrogen / change of energy law (EEG) required
- Not currently economically / no compensation of losses and additional investments (missing of storage reimbursement regulations) / only in the mobility (f-cell) sector competitive

Building law

- No experience by the licensing authorities
- No regulations for construction of hybrid power plants outside zoning plans

Technical challenges

- Balance of component-sizing
- Adjustable electrolysers over a range of 100%
- Determining the required control speed
- Full automatic energy control system / own development of control system
- Reducing investment costs