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Updating the US hydrologic classification: an approach to
clustering and stratifying ecohydrologic data
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ABSTRACT

Hydrologic classifications unveil the structure of relationships among groups of streams with differing streamflows and provide a
foundation for drawing inferences about the principles that govern those relationships. Hydrologic classes provide a template to
generalize hydrologic responses to disturbance and stratify research and management needs applicable to ecohydrology. We used
a mixed-modelling approach to create hydrologic classifications for the continental USA using three streamflow datasets, a
reference dataset compiled under more strict traditional standards and two additional datasets compiled under more relaxed
assumptions. A variety of models were applied to each dataset, and Bayes criteria were used to identify optimal models and
numbers of clusters. Using only reference-quality gauges, we classified 1715 stream gauges into 12 classes across the USA. By
including more streamflow gauges (n= 2402 and 2618) of lesser reference quality in subsequent classifications, we observed
minimal increases in dimensionality (i.e. multivariate space) at the expense of increasing uncertainty and outliers. Part of the
utility of classification systems rests in their ability to classify new objects and stratify data by common properties. We
constructed separate random forest models to predict hydrologic class membership on the basis of hydrologic indices or
landscape variables. In addition, we provide an approach to assessing potential outliers due to hydrologic alteration based on
class assignment. Departures from class membership due to disturbance take into account multiple hydrologic indices
simultaneously; thus, classes can be used to determine if disturbed streams are functioning within the natural range of hydrologic
variability. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

Supporting information may be found in the online version of this article.
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INTRODUCTION

Classifications depict our current state of knowledge about
a subject area (Melles et al., 2012) and provide the
structure and relationships within and among groups of
objects (Sokal, 1974). These relationships provide a
foundation for drawing inferences about the principles that
govern relationships among different classes and how to
interpret unclassified objects (Sokal, 1974). With regard to
river systems, stream classifications and their use in
management have a fairly long history (Horton, 1945;
Strahler, 1957; Pennak, 1971; Rosgen, 1994). However,
Melles et al. (2012) suggested that the advent of the
‘computer age’ dramatically enhanced opportunities for
developing data-intensive classification systems across
larger spatial scales and at higher resolutions (e.g. Bailey,
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1983; Omernik, 1987; Omernik and Bailey, 1997; Snelder
and Biggs, 2002; Snelder et al., 2007). Likewise,
discussions regarding novel approaches, evaluation/testing,
and appropriate scales for river classifications systems have
continued to increase in recent years (Snelder and Biggs,
2002; Snelder et al., 2007; Leathwick et al., 2011; Melles
et al., 2012; Olden et al., 2012).
Hydrology varies extensively across continents and

globally (Kennard et al., 2010b; Haines et al., 1988), yet
streams display reoccurring patterns in the magnitude,
duration, frequency, timing, and rate of change of flow
events within regions (Acreman and Sinclair, 1986; Burn and
Arnell, 1993; Poff et al., 1997). These repeatable patterns
naturally predispose streams to hydrologic classification. One
of the primary justifications for developing hydrologic
classifications is to provide a means for developing
environmental flow standards to support the preservation of
freshwater biodiversity and ecosystem services (Arthington
et al., 2006; Poff et al., 2010). For example, streams that
behave similarly hydrologically should share similar patterns
in ecology (Arthington et al., 2006) and respond similarly to a
c domain in the USA.
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given anthropogenic stressor (Arthington et al., 2006; Poff
et al., 2010). Classifications alleviate some of the complexity
of environmental flow management by consolidating hydro-
logic variation into stream types and managing for groups of
streams rather than for the uniqueness of individual water
bodies. The development of hydrologic classifications for use
in environmental flow management has greatly expanded in
recent years. Approaches have ranged from deductive
techniques using regional boundaries (e.g. ecoregions) and
environmental variables for inferring areas of similar
hydrologic regimes to inductive techniques where hydrologic
data directly inform classifications (Olden et al., 2012). In
situations where hydrologic information is lacking, deductive
approachesmay be advantageous; however, these approaches
assume that the actual number of hydrologic classes (i.e.
represented hydrologic variability) is already known or
assume that the structure of environmental variables is
important in predicting hydrology (Olden et al., 2012). In
addition, deductive approaches often only include best
professional judgment as criteria and may not accurately
represent or predict streamflow patterns (McManamay et al.,
2012c). Inductive approaches, by comparison, utilize the
available hydrologic information (i.e. stream gauges) and
classification techniques that group streams according to
similarities in hydrologic metrics (Olden et al., 2012).
Inductive approaches to hydrologic classifications have been
created at multiple scales including states (Kennen et al.,
2007, 2009; Turton et al., 2008; Henriksen and Heasley,
2010; Liermann et al., 2012), regions (Monk et al., 2006;
Sanborn and Bledsoe, 2006; Chinnayakanahalli et al., 2011;
Figure 1. US hydrologic classification of 806 stream gauges into ten clas
IF = intermittent flashy, IR = intermittent runoff, PF= perennial flashy, PR= pe

SS= super

Published 2013. This article is a U.S. Government work and is in the public
McManamay et al., 2012b), continents (Kennard et al.,
2010b), and the world (Haines et al., 1988). Despite this
intense growth, comprehensive testing of hydrologic classi-
fications in generalizing patterns of disturbance and
establishing environmental flow standards, one of the central
precepts behind creating streamflow-based classes
(Arthington et al., 2006; Poff et al., 2010), has not been
fully addressed. Furthermore, with regard to ecological
patterns, the predictive capacity of hydrologic classifications
has received little attention (but see Monk et al., 2006;
Chinnayakanahalli et al., 2011).
The latest hydrologic classification for streamflows

within the conterminous USA was produced more than
15 years ago by Poff (1996), who documented ten
dominant streamflow types of varying intermittency,
perennial flows, and timing (Figure 1). Over two decades
of US Geological Survey (USGS) streamflow gauge
information have become available since Poff (1996)
produced a hydrologic classification for 806 reference
stream gauges in the conterminous USA (latest gauges
used were from 1986). Thus, it becomes important to
understand how increases in sample size may influence the
representative hydrologic variation across the USA via
changes in the number of classes and class membership.
However, updating hydrologic classifications requires
establishing data-quality standards for the inclusion of
new information. One common approach in hydrologic
classification is screening gauges for inclusion in a final
‘reference’ dataset (Olden et al., 2012). The screening
process typically includes evaluating landscape distur-
ses taken from Poff (1996). GW=groundwater, HI = harsh intermittent,
rennial runoff, SN1= snowmelt 1, SN2= snowmelt 2, SR= snow and rain,
-stable.
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905US HYDROLOGIC CLASSIFICATION
bances upstream of each gauge, the hydrologic record
length, and the extent of overlap among hydrologic records
(Olden et al., 2012). Because most hydrologic classifica-
tions are constructed from natural streamflow patterns, the
standards for inclusion can be quite strict and exclusive
(Poff, 1996; Kennard et al., 2010a; Olden et al., 2012),
which may limit the sample size and variation represented
in the final dataset. Thus, high-data-quality standards often
come at the expense of losses in hydrologic information.

The purpose of this study was to use an inductive
approach to develop an updated hydrologic classification
for the continental USA using three streamflow datasets of
varying reference quality. We compiled a reference dataset
under more strict traditional standards and two additional
datasets under more relaxed assumptions. We then
determined how the datasets varied in terms of dimension-
ality, predictive capacity, uncertainty (including outliers),
and cluster stability. We also compared our hydrologic
classes with those of Poff (1996) to describe how
representative variation has changed. The utility of any
classification system lies, in part, on its ability to stratify
analyses and generalize patterns in disturbance. Thus, we
provide an example of a multivariate method for
determining the degree of hydrologic modification based
on class membership.
METHODS

Identifying gauges for hydrologic classification

We used selected USGS gauges that fell into one of three
categories: (1) reference, (2) nonreference with minimal
hydrologic disturbance, and (3) pre-dam regulation.
Although we define each category more thoroughly later,
we provide a brief overview here. The categories represent
a gradient from strict reference standards to progressively
more relaxed assumptions, with relaxed assumptions
indicative of lower reference quality, not high levels of
disturbance. Reference gauges represent steams with the
lowest amounts of anthropogenic disturbances based on
landscape assessments and expert judgment (Falcone et al.,
2010b). Nonreference streams may have slight distur-
bances in their upstream watershed that justify exclusion as
reference-quality gauges. However, we presume that some
disturbance is acceptable for inclusion in hydrologic
classifications as long as streams function within the
bounds of natural hydrologic variation. Lastly, gauges with
discharge records that extend prior to dam regulation can
potentially provide additional hydrologic information
uninfluenced by disturbance. However, discharge records
preceding dam construction also predate the availability of
geospatial datasets and landscape information used to
accurately assess disturbance and, thus, are prone to
uncertainty. In addition, pre-dam records may represent
Published 2013. This article is a U.S. Government work and is in the publi
different climatic regimes, which could influence classifi-
cation results.
We define reference gauges as streams with the least

amount of physiochemical and biological habitat distur-
bances within the current state of the landscape (Stoddard
et al., 2006; Falcone et al., 2010b). Reference conditions
and watershed disturbances may vary slightly among
regions (Falcone et al., 2010b); thus, in order to represent
continental-wide hydrologic variability, assessing levels of
disturbance relative to each region is important. Reference
gauges for the USA were provided in the Geospatial
Attributes of Gages for Evaluating Streamflow, version II
(GAGES II) database developed by (Falcone, 2011). The
GAGES I and II databases were developed as part of a
national effort to compile information on USGS stream
gauges and their upstream watersheds in the conterminous
USA, Alaska, Hawaii, and Puerto Rico (Falcone et al.,
2010b, 2011). Geospatial information system (GIS)
approaches were used to delineate watersheds and
summarize natural (e.g. climate and soils) and anthropo-
genic (e.g. dams and land use) geospatial information for
9322 gauges (Falcone et al., 2010b, Falcone, 2011).
Reference status was determined using three sources of
information, including a GIS-based hydrologic disturbance
index (HDI) (Falcone et al., 2010b), qualitative assess-
ments of hydrologic alterations using 7∙5′ topographic
maps, and USGS Annual Water Data Reports (ADRs)
(Falcone et al., 2010b). The HDI represents the cumulative
disturbance of selected anthropogenic stressors summa-
rized within each gauge's watershed. HDI stressors include
major dam density, change in dam storage (1950–2006),
percentage of canals and artificial paths along the mainstem
of each gauge, distance to National Pollutant Discharge
Elimination Sites, freshwater withdrawal estimates, and
landscape fragmentation (Falcone et al., 2010a). Topo-
graphic maps provided visual assessments of dams, intense
urbanization, and poor watershed practices that may be
unaccounted for in HDI calculations. ADRs provided local
expert judgment on the extent of hydrologic alterations
above each USGS gauge including dam regulation,
diversion, and withdrawals. Typically, at least 15 years of
record is suitable for estimating hydrologic variables that
are used to detect differences in the spatial variation, such
as flow classifications (Kennard et al., 2010a). We selected
reference gauges having at least a 15-year record.
Reference streams represented only a subset of the

gauges available for the USA and left large areas of the
landscape void of hydrologic information. On the basis of
our judgment, we observed many streams with slight
disturbance levels classified as nonreference in the GAGES
II database. Furthermore, many nonreference streams had
HDI values lower than those of reference streams,
potentially indicating low hydrologic alteration. Thus, we
attempted to identify additional nonreference gauges with
c domain in the USA. Ecohydrol. 7, 903–926 (2014)
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minimal hydrologic disturbances to include in the classifica-
tion. We define minimal hydrologic disturbance gauges as
streams with no major upstream impoundments on the
mainstem (Falcone et al., 2010b), low total dam storage from
tributaries, little to no diurnal fluctuations, and low
urbanization (<15% area) and channelization in the water-
shed. Because we use only daily averages in hydrologic
records, we suspect that minor subdaily fluctuations have
little effect on hydrologic variables. We also presume that
small diversions (defined later) would be insignificant to
hydrologic classification because we standardize all magni-
tude variables by mean daily flow (see Hydrologic Classifi-
cation section). Minimal hydrologic alteration was
determined by a two-step screening procedure. First, we
recalculated HDI indices using seven anthropogenic distur-
bance variables summarized for each watershed, which
included 2009 dam storage, major dam density, freshwater
withdrawals, percentage of stream distance as canals,
percentage of watershed area comprised of agriculture
irrigation (%AGIR), watershed fragmentation, and road
density. Similar to Falcone et al. (2010a), we calculated
thresholds for each disturbance variable based on percentiles
(1st, 20th, 40th, 60th, 80th, 90th, 95th, and 98th percentiles).
We then assigned scores of 1–8 for each, and the sum of the
scores was used to calculate an HDI for each stream.We used
percentiles (20% increments) to categorize HDI values into
low, low-to-moderate, moderate, moderate-to-high, and high
categories. We selected only gauges with low and low-to-
moderate HDIs with at least a 15-year record (HDI< 14). As
a secondary measure, we reviewed ADRs and screening
comments for each gauge. We excluded gauges with reports
and comments mentioning regulation by a dam upstream,
major diversions (irrigation, hydropower, and municipali-
ties), channelization, and agriculture. We included gauges
where comments suggested slight diurnal fluctuations, small
diversions for municipalities (≤10% of 7-day low flow), and
some irrigation for agriculture. Some comments indicated
diversions for irrigation for a given amount of agriculture
acreage, which provided little information on the extent of
hydrologic alteration. We evaluated values of %AGIR for
each gauge where irrigation was mentioned to ensure their
values fell within an acceptable range on the basis of values
for reference and selected nonreference gauges in the same
region. As a final measure for gauges with uncertain
watershed disturbances, we examined plots of cumulative
annual variation in flow versus time to identify apparent
changes in streamflow patterns attributable to different
anthropogenic stressors similar to methods provided by Vogl
and Lopes (2009). Because of limited watershed information,
HDIs could not be calculated for Alaska, Hawaii, and Puerto
Rico gauges; thus, we had to rely on ADRs and evaluating
plots of hydrographs.
Streams with pre-dam regulation hydrologic information

were selected using the GAGES II database and the
Published 2013. This article is a U.S. Government work and is in the public
National Inventory of Dams (NID) (USACE, 2012). The
NID has information for over 85 000 dams in the USA
including their purpose, dimensions, storage capacity,
contributing drainage area, river name, and year built.
First, we chose previously unselected gauges from GAGES
II with ≤10 major dams in their upstream watershed and
with the mention of USGS station name or ADR: (1) dam
regulation as the only source of hydrologic modification
and (2) the specific name(s) of the dam contributing to
regulation (e.g. Pound River below Flannagan Dam near
Haysi, VA, gauge no. 03209000). Major dams are
considered dams with ≥15-m heights or ≥6167-Ml storage
capacity (5000 acre feet) (Falcone et al., 2010b). ADRs
typically mention the year in which dam regulation was
initiated. However, for cases without information on initial
year of regulation, we searched the NID database to find
specific dams and their year of completion. We then
generated a reduced list of regulated gauges with at least a
15-year record prior to dam construction (accounting for at
least 2 years of pre-dam completion).
Although ADRs provide specific information on the

dominant regulatory dam(s) upstream of each gauge, they
may not mention cumulative regulation by other smaller,
earlier constructed dams in the basin. We used spatial data
to account for upstream regulatory dams and their year of
construction. Within the NID database, we selected dams
with heights >6m to avoid including off-channel farm/
holding ponds and minor impoundments. We imported the
latitudes and longitudes of all selected gauges and dams in
the NID into ARC GIS 9∙3. Falcone, 2011 delineated
watershed boundaries for each USGS gauge within the
GAGES II database. We used a spatial join procedure to
link all upstream dams in the NID to each gauge's
watershed in ARC Map 9∙3. We assessed each gauge
individually to determine whether each record preceded the
construction of other dams besides those mentioned in the
ADRs. As a secondary measure for gauges with uncertain
watershed disturbance, we used historical trends in
urbanization (Brown et al., 2005) and water use estimates
(Kennen et al., 2009) to estimate levels of disturbance for
periods prior to dam construction (see McManamay et al.,
2012a, for methods). In addition, we reviewed plots of
hydrologic records pre-regulation and post-regulation to
ensure that apparent changes were associated with periods
following our unregulated record.

Hydrologic classifications

Mean daily streamflow data for all stream gauges were
downloaded from the USGS National Water Information
System.Daily flowdata for each gauge (entire record or entire
pre-dam regulation record) were imported into the Hydro-
logic Index Tool (HIT) software (Henriksen et al., 2006),
which calculates 171 hydrologic indices reported by Olden
domain in the USA. Ecohydrol. 7, 903–926 (2014)
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and Poff (2003). Indices are grouped into five categories of
flow including magnitude, frequency, duration, timing, and
rate of change. Olden and Poff (2003) found that hydrologic
variables tend to be correlated, leading to a redundancy of
information; however, they also reported that the indicators of
hydrologic alteration (IHA) variables explained the majority
of information in 171 hydrologic indices. We reduced the
variables to 110 indices that included the 32 (IHA) (Richter
et al., 1996), 32 range-of-variability variables associated with
the IHA metrics (Richter et al., 1997), and variables used in
previous classifications (Poff, 1996; McManamay et al.,
2012b). Hydrologic variables and their descriptions are
available in Table S1.

We divided all variables related to magnitude (e.g.
mean January flow) by the mean daily flow to
standardize all streams by river size (Kennen et al.,
2007; Kennard et al., 2010b). We use mean daily flow
rather than median daily flow because some streams
were highly intermittent and had zero-flow values
(Kennard et al., 2010b). Zero flow in highly intermittent
streams resulted in missing values for low-flow-related
hydrologic variables (e.g. baseflow index and variation
in short-duration low flows). In the case of highly
intermittent streams, the dataset was scanned for missing
values to determine if streams needed to be removed or
if values could be estimated or calculated from other
hydrologic variables. For example, the baseflow index is
calculated as the 7-day minimum flow divided by the
mean daily flow. Other variables could be estimated by
linear regression using one or multiple hydrologic
variables. For example, variation in low flows displayed
inverse relationships to low-flow magnitudes. For
missing values from perennial streams, we used the
imputeData function (based on mix and mclust pack-
ages) in the R programming environment to estimate
missing values. The mix package uses a multivariate
normal regression probability model on the complete
data (observed and missing values) (Schafer, 2012).
Multiple imputation is based on Monte Carlo procedures
in which missing values are replaced with the average of
simulated values (Schafer, 1997). Following imputation,
we rescanned the dataset for outliers.

In order to create a gradient from more traditional
reference standards to progressively relaxed assumptions,
we created three separate datasets that included only
reference gauges (reference), reference and nonreference
gauges (intermediate), and all reference, nonreference, and
pre-dam regulation gauges (expanded). We performed a
log(x + 1) transformation on all variables and then
performed a principal components analysis (PCA) based
on correlations to reduce the dimensionality of each
dataset. All variables were scaled by maximum values
and centred from 0 to 1 prior to PCA. Following PCA, we
reduced the reference, intermediate, and expanded datasets
Published 2013. This article is a U.S. Government work and is in the publi
to 13 principal components (PCs) that explained 85%,
89%, and 89% of the overall variation, respectively. We
used scores from the 13 PCs for classifications. Statistical
significance of all PCs was determined using the broken-
stick rule (Jackson, 1993). We evaluated the loadings of
hydrologic variables on the first four PCs to examine which
variables explain the majority of variation in each dataset.
The ten hydrologic variables with the highest absolute
loadings for each PC were selected (40 total variables).
Results of the PCA analysis, including variable loadings,
are provided in Table S2.
We conducted classifications separately for the refer-

ence, intermediate, and expanded datasets using PC scores.
We used the mclust package in the R programming
environment to cluster gauges on the basis of component
scores (Fraley and Raftery, 2012). Because the underlying
distributions and the appropriate clustering algorithm are
typically unknown in classification situations, the Mclust
function is advantageous in that it assumes a variety of
model-based approaches and uses the Bayes criteria to
identify the most likely model and number of clusters
(Fraley et al., 2012). In addition, the Mclust function uses
hierarchical clustering to estimate initial structure and
values followed by Gaussian mixture modelling with
expectation–maximization parameter estimation. The
Bayes information criterion (BIC) is then used to determine
the best model (out of ten models with varying covariance
structures) and number of clusters on the basis of the
largest BIC value (Fraley et al., 2012). The classification
process is initialized by hierarchical modelling; thus, it
does not require but allows the flexibility of the user to
specify a conjugate prior on the number of mixture
components (clusters), parameters, or model. Because of
the large sample size and unknown mixture components for
the current scale (conterminous USA and Alaska, Hawaii,
and Puerto Rico), we determined that the initial hierarchical
clustering procedure from 1 to a maximum of 20 clusters as
an exploratory technique should have precedence over any
arbitrary controls.

Cluster diagnostics

Comparing the gain in hydrologic information associated
with adding gauges with the costs of relaxing reference
data standards can be accomplished using different
quantitative measures. For example, within the intermedi-
ate and expanded hydrologic classifications, including
gauges with slight disturbances or pre-dam hydrologic
information could have influenced the underlying multi-
variate distribution by (1) increasing variability (i.e.
dimensionality) due to demographic changes in the
representative sample of streams within a class, (2) shifting
the dominant hydroclimatic period of record representative
of gauges (in the case of pre-dam regulation), and (3)
c domain in the USA. Ecohydrol. 7, 903–926 (2014)
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increasing unnatural correlations among variables due to
hydrologic disturbance. An obvious first measure is deter-
mining whether additional gauges increase the overall
dimensionality of the dataset. However, increases in
dimensionality may result from including outliers from
disturbed sites. Because classifications should consolidate
variation, improvements in classifications can be quantified
by increases in predictive capacity and decreases in variation
due to error. From a management perspective, however,
clusters should be stable, and observations should have a high
amount of certainty of class membership to support decisions.
We provide five quantitative diagnostics to compare the
dimensionality, predictive capacity, uncertainty, presence of
outliers, and cluster stability among the three datasets.

Dimensionality

We used scores from the 13 components in the PCA analysis
for the expanded dataset to explore the dimensionality
represented by each subset of gauges: reference, nonreference,
and pre-dam-regulated gauges.We calculated PC ranges as the
difference inminimum andmaximumvalues for each of the 13
components for each of the three subsets. We then compared
whether the PC ranges for nonreference and pre-dam gauges
exceeded those for the reference gauges.

Predictive capacity

One approach to compare the predictive capacity of different
hydrologic classifications is to determine how well classes
predict hydrologic variables. We used a multivariate analysis
of variance in R to determine the predictive capacity of
hydrologic classes on the 32 IHA variables for the reference,
intermediate, and expanded datasets. We used R2-adjusted
values andmean square error to assess the amount of variation
explained in the hydrologic data by varying cluster solutions
(2–20 classes) for each of the three datasets. All variables
were log(x+1) transformed prior to analysis.

Uncertainty

The Mclust function provides a measure of uncertainty of
class membership for each gauge for a given cluster solution
(probability that sample is not a member of its assigned
cluster). We explored differences in uncertainty among the
reference, intermediate, and expanded datasets for varying
cluster solutions (2–20 classes). Using only the optimal
number of classes for each dataset, we also compared the
mean uncertainty for all gauges and only reference gauges
among the three datasets using a Kruskal–Wallis test.

Outlier analysis

Determining the multivariate distances of individual stream
gauges within classes can also provide an assessment of the
robustness of different gauge datasets within hydrologic
Published 2013. This article is a U.S. Government work and is in the public
classifications. We used squared Mahalanobis distances (D2)
to determine how the addition of gauges may have influenced
the multivariate distribution and determine outliers
(Mahalanobis, 1936).We hypothesized that including gauges
with minimal hydrologic disturbances may create unnatural
variation, thereby producing more outliers. Secondly,
including pre-dam regulation information may increase
variation by influencing the distribution of basin sizes
represented within hydrologic classes or changing the
predominant period of record (e.g. primarily pre-1950s).
Within the expanded hydrologic classification, we calculat-

edD2 for all streamgauges as themultivariate distance between
each gauge and the centroid of the reference gaugeswithin each
class. Because D2 takes into account the covariation among
variables, it differs from Euclidean distance in that it is scale
invariant (Mahalanobis, 1936). We calculated D2 using the
IHA variables and on the basis of the covariance matrix for all
observations within a class. In order to detect outliers, we
visually inspected plots of ordered D2 values against quantiles
of the chi-squared distribution within each class to determine
any breaks in the distribution (Filzmoser and Gschwandtner,
2012). Outliers were detected as stream gauges deviating from
a straight-line relationship (i.e. creating a break). Visually
inspecting distributions and using break points can be a robust
technique for detecting outliers in comparison with more
automated or mathematical solutions (Garrett, 1989;
Filzmoser, 2005).

Cluster stability

Assessing cluster stability provides some level of confi-
dence that classifications are robust, i.e. classes will not
change if a small number of streams are removed. We used
the clusterboot function in R (fpc package) to repeat
clustering procedures for the reference, intermediate, and
expanded datasets after randomly removing observations
from each dataset (Hennig, 2013). We repeated the
bootstrapping procedure for 20 simulations for the optimal
number of clusters for each dataset under two scenarios:
removing 5% of gauges and removing two gauges. For
each simulation, a Jaccard similarity index is calculated as
a measure of each new cluster and its most similar
respective original cluster (Hennig, 2013). We calculated a
cluster stability index (CSI) as the average proportion of
gauges reassigned to original clusters across the 20
simulations. CSI values <0∙5 represent dissolved clusters
whereas clusters with values >0∙6 indicate true patterns
(Hennig, 2008). Stable and very stable clusters have CSI
values of 0∙75 and 0∙85, respectively.

Class descriptions, geographic affiliation, and
class comparison

For simplicity, from here on, we only focus on the reference
and expanded classifications. In addition, the reference and
domain in the USA. Ecohydrol. 7, 903–926 (2014)
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expanded classifications represent opposing endpoints of
strict reference quality versus relaxed assumptions. In
order to provide ecologically relevant names for each
class, we evaluated patterns in 15 hydrologic metrics
(box-and-whisker plots) among classes in the reference
and expanded classification. The 15 variables included a
subset of IHA indices (12) and were selected because of
their ease of interpretation and documented ecological
significance. We plotted class effect sizes simultaneously
in order to visually isolate classes displaying the most
divergence and hydrologic variables explaining the
greatest amount of variation (effect sizes calculated as
difference of each class mean from grand mean divided
by pooled standard deviation, SD). We mapped all gauges
by their latitude and longitude according to class
membership to assess spatial patterns, which further aided
in class depiction.

We compared both reference and expanded classifica-
tions with those of Poff (1996) to determine the degree of
association among groups given increased sample size and
dimensionality. We obtained the 1996 US flow classifica-
tion dataset directly from N.L. Poff after request; however,
it is also publicly available through Poff and Allan (1993).
We used a chi-squared analysis to test whether the two
classifications were statistically independent (i.e. not
associated) and Cramér's V to determine the degree of
association among the classifications (Cramér, 1999). In
order to provide some relevance for comparison, we
calculated statistics for association among the updated
classification. We then evaluated individual class member-
ship and association among classes.

Hydrologic and landscape predictive models

Many studies have utilized hydrologic models (Poff, 1996;
Kennard et al., 2010b; McManamay et al., 2012c) and
landscape models (Sanborn and Bledsoe, 2006; Kennard,
2010b; McManamay et al., 2012c) to predict class member-
ship. Developing tree-based classification models using
hydrologic and landscape information can provide (1) an
assessment of predictor importance in discriminating among
classes (Kennard et al., 2010b), (2) a mechanistic under-
standing of the structure or hierarchy of variable importance
at different scales (McManamay et al., 2012c), and (3) tools to
predict class membership for ungauged streams or for
hydrologic information not included in the classification.
Hydrologic models can predict class memberships as
hydrologic data become available, such as simulated
hydrographs or gauge records excluded from the original
classification that mature to a suitable length. In addition,
hydrologic models can predict changes in class membership
induced by changing hydrologic regimes due to disturbance
or climate change (e.g. Liermann et al., 2012). In contrast,
landscape models can predict class membership in the
Published 2013. This article is a U.S. Government work and is in the publi
absence of hydrologic information, thereby providing an
approach to extrapolate membership to the landscape
(Snelder et al., 2009).
We constructed hydrologic and landscape models to

predict class membership for both the reference and expanded
classifications using random forests in R. Random forests are
an improved form of exploratory learning over traditional
tree-based approaches in that they have increased classifica-
tion accuracy and robust approaches to estimating variable
importance (Breiman, 2001; Cutler et al., 2007). Random
forests improve accuracy by generating a large number of
classification trees (typically 500) and then combining the
predictions from all trees. Each tree is generated from a
random subset of variables and a bootstrap subsample of the
data (63% of observations). The remaining samples [out-
of-bag (OOB) observations] are used in a cross-validation
procedure to calculatemisclassification rates (OOB error rate)
and variable importance. To calculate variable importance,
values of each variable for OOB observations are randomly
permuted and then predicted using each tree. Variable
importance (i.e. mean decrease in accuracy) is calculated as
the difference in misclassification rates between randomly
permuted OOB data and the original OOB divided by the
standard error of all misclassification rates. For more
information, refer to Breiman (2001) and Cutler et al. (2007).
For the hydrologic classification trees, we used two

datasets: (1) the 32 IHA variables and (2) all 110
hydrologic variables (Table S1). Because the IHA variables
are widely used and have been shown to explain the
majority of variation in available hydrologic metrics
(Olden and Poff, 2003), this provided an opportunity to
determine the predictive capacity of IHA relative to other
hydrologic metrics. Magnitude-related hydrologic variables
were standardized by mean daily flow. We accessed
information on climate, basin topography, and soils for
all gauges using the GAGES II dataset (Falcone, 2011). We
originally identified 77 landscape predictors, which were
reduced to 52 after removing correlated variables. Variables
that were more interpretable or were hypothesized to
provide a better mechanistic understanding of how land-
scape factors structure hydrologic were retained over their
correlated counterparts. We constructed random forests to
predict reference and expanded class membership using only
hydrologic or landscape variables. We used the OOB error
rate to compare the predictive capacity among models. In
addition, we used variable importance to compare variables
with the highest explanatory power.

Utility of the hydrologic classification framework

We developed an approach to determine the degree of
hydrologic alteration in gauges on the basis of class
membership. In short, our approach consists of (1) assigning
disturbed gauges to appropriate hydrologic classes on the
c domain in the USA. Ecohydrol. 7, 903–926 (2014)



910 R. A. MCMANAMAY, M. S. BEVELHIMER AND S-C. KAO
basis of landscape predictive models and (2) using multivar-
iate measures to assess deviation from class centroids and
determining outliers. We assigned dam-regulated gauges
(identified from the Methods section) to one of the expanded
hydrologic classes using the landscape predictive model
(random forest) developed in the previous section. We
obtained post-dam construction hydrologic data for each
regulated gauge and calculated 171 hydrologic indices using
the Hydrologic Index Tool. We used two approaches to
determine outliers. First, we applied the hydrologic predictive
model (random forest from the previous section) to assign
dams to classes on the basis of their current hydrologic
regime. The second approachwas similar to thatmentioned in
the Uncertainty and Outlier Analysis sections and consisted
of calculatingD2 and determining outliers.D2 was calculated
as the distance between each regulated gauge and the centroid
of the expanded gauges within each class. Because of class
size, we based D2 only on the 36 hydrologic variables (from
the Uncertainty and Outlier Analysis sections) and the
covariance matrix for all observations within a class
(regulated and unregulated gauges). Outliers were detected
as stream gauges deviating from a straight-line relationship in
plots of ordered D2 values versus chi-squared quantiles.
Falcone (2011) provided total dam storage per unit area

(i.e. Ml km-2) for each stream gauge and the straight-line
distance from each gauge to the nearest major dam.
Falcone (2011) also digitized mainstem stream reaches for
each gauge and calculated stream sinuosity ratios as the
curvilinear distance of each reach divided by the straight-
line distance. We estimated the distance downstream in
river kilometres from the nearest major dam to each gauge
by multiplying the straight-line gauge-to-dam distance by
stream sinuosity. We used generalized linear models to
determine the effects of total dam storage and distance
from dam on D values (i.e. normalized D2 values) using
Gaussian distribution. We performed a log(x + 1) trans-
formation on both explanatory variables.
RESULTS

Identifying gauges for hydrologic classification

Overall, there were 1715 gauges identified as reference
streams by Falcone, 2011 with at least 15 years of record in
the continental USA (Figure 2, Table S1). HDI scores for
9067 gauges (reference and nonreference) in the conter-
minous USA ranged from 1 to 38 (Figure 2). Of the 7120
nonreference streams in the conterminous USA, we
identified 1923 with HDI values <14 (low and low-to-
moderate disturbances). We evaluated ADRs for 145
nonreference Alaska, Hawaii, and Puerto Rico gauges to
determine their inclusion in the classification. We selected
a total of 674 nonreference gauges to include in the
classification, 11 of which were from Alaska, Hawaii, or
Published 2013. This article is a U.S. Government work and is in the public
Puerto Rico (Table S1). We isolated 1180 gauges currently
regulated by dams. Of these, we selected 229 with at least
15 years of hydrologic information pre-dam construction
(Figure 2 and Table S1). Hence, the reference, intermedi-
ate, and expanded datasets were composed of 1715, 2402,
and 2618 stream gauges, respectively.
Reference and nonreference streams showed consistent

distributions in their hydrologic records; however, streams
with pre-dam regulation information had considerably
shorter periods of record (Figure 3). Reference and
nonreference streams also displayed considerable temporal
overlap in their records. Pre-dam-regulated streams
displayed a shift in their records that only overlapped
reference and nonreference gauges with long-term records.
Hydrologic classifications

For the reference dataset, eigenvalues for the first nine PCs
exceeded eigenvalues from random data, suggesting
statistical significance (Table S2). Only the first six PCs
were significant for the intermediate and expanded
datasets. Hydrologic variables with the highest loadings
were similar among the three datasets. Baseflow indices,
low and high flows of various duration, and monthly flow
indices (averages and maxima) dominated the variables
with highest loadings (Table S2). At least 15 IHA variables
were represented among the 40 variables with the highest
loadings within in each dataset.
For the reference classification, the best model (maxi-

mum BIC) occurred at 19 components with an ellipsoidal,
equal shape (VEV) model; however, the VEV model
displayed insignificant increases in BIC over the ellipsoi-
dal, varying volume, shape, and orientation (VVV) model
(Figure 4A). For the intermediate classification, the
maximum BIC occurred at 15 components with VEV and
VVV models whereas for the expanded classification, VEV
or VVV models with 20 components had the maximum
BIC values (Figure 4A). With the exception of the
intermediate classification, we observed that BIC plots
displayed increasing values with increasing numbers of
components until each reached a plateau. Following the
plateau, BIC values became unstable (increasing/decreas-
ing) prior to reaching maximum values. In favour of a more
parsimonious model, we truncated the number of classes to
the number of components in which the local BIC maxima
occurred following the initiation of the plateau. Following
the plateau, we determined that 12, 15, and 15 components
emerged as a local stable maximum for the reference,
intermediate, and expanded classifications, respectively.
Although the VEV model retained the highest local BIC
value for the reference and intermediate classifications, the
expanded classification displayed a local BIC maximum
for the ellipsoidal, varying volume, shape, and orientation
(VVV) model.
domain in the USA. Ecohydrol. 7, 903–926 (2014)



Figure 2. Hydrologic disturbance indices (HDIs) for all gauges, reference gauges, and selected nonreference gauges in our study. HDIs were not
calculated for pre-dam regulation gauges because their record preceded the creation of geospatial landscape disturbance data. Likewise, Alaska, Hawaii,

and Puerto Rico gauges lacked geospatial data needed to calculated HDIs.

Figure 3. Period of record (total time span) of all reference (n= 1715), nonreference (n= 674), and pre-dam regulation gauges (n= 229) used in our study.
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Figure 4. (A) Bayes information criteria (BIC) plots used to determine the best model and appropriate number of mixture components (clusters), which
occur at the maximum BIC value. Stars indicate the models and associated clusters with a local BIC maximum value following the plateau, which
suggests that additional components create some instability and do not explain considerable amounts of additional variation. Model names:
spherical = EII (equal volume); VII (unequal volume); diagonal = EEI (equal volume, shape); VEI (varying volume, equal shape); EVI (equal volume,
varying shape); VVI (varying volume, shape); ellipsoidal = EEE (equal volume, shape, orientation); EEV (equal volume, shape); VEV (equal shape);
VVV (varying volume, shape, orientation). Stars and dots represent local peaks and maxima in BIC values, respectively. (B) Predictive capacity (R2

adjusted), mean square error, and uncertainty associated with different cluster solutions for the reference, intermediate, and expanded datasets.
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Cluster diagnostics
The dimensionality represented by reference streams in-
creased slightly with the addition of nonreference gauges, but
not with the addition of pre-dam regulation gauges (Table
S2). PC ranges for nonreference streams exceeded those of
the reference streams for the 1st, 7th, 8th, 9th, 10th, and 11th
PCs, which cumulatively represented 41∙6% of the overall
variation. However, in most cases, the difference was
minimal. Reference streams had the largest PC ranges in
the remaining PCs, which represented 47% of total variation.
Published 2013. This article is a U.S. Government work and is in the public
Predictive capacity (R2 adjusted) gradually increased with
the increasing number of clusters for the reference,
intermediate, and expanded datasets (Figure 4B). However,
adjusted R2 was higher for the reference dataset than for the
intermediate and expanded datasets for cluster solutions less
than ten classes, after which there were no apparent
differences. Similarly, mean square error values were lower
for reference data than for the intermediate and expanded
datasets for cluster solutions less than ten classes, after which
there were no apparent differences (Figure 4B).
domain in the USA. Ecohydrol. 7, 903–926 (2014)
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Typically, uncertainty showed increases with the
increasing number of classes, with intermediate and
expanded datasets displaying higher average values than
the reference dataset (Figure 4B). Uncertainty was
significantly different among the reference (mean = 0∙023,
SD= 0∙077), intermediate (mean = 0∙028, SD= 0∙082), and
the expanded classifications (mean = 0∙025, SD= 0∙069) for
their respective optimal cluster solutions (Kruskal–Wallis,
χ2 = 7∙348, p = 0∙025). Uncertainty in the intermediate
classification was significantly higher than that in the
reference classification (pairwise Wilcoxon, p = 0∙029), but
not significantly different than that in the expanded
classification (pairwise Wilcoxon, p = 0∙822). Uncertainty
for only references gauges, however, was not significantly
different among the reference, intermediate, or expanded
classifications (Kruskal–Wallis, χ2 = 3∙428, p = 0∙180).
Approximately, 11%, 12%, and 10% of gauges had
uncertainties greater than 0∙05 in the reference, intermedi-
ate, and expanded datasets, respectively. In addition, 7%,
7%, and 9% of gauges had uncertainties greater than 0∙10
in the reference, intermediate, and expanded classifications,
respectively.

Across the majority of classes in the expanded dataset,
average D2 values were typically higher for nonreference
Figure 5. Levels of uncertainty represented by squared Mahalanobis distanc
dam gauges within each class. D2 values were calculated as distances from

classification. Outliers were calculated on the basis o

Published 2013. This article is a U.S. Government work and is in the publi
and pre-dam regulation gauges than for reference gauges
(Figure 5). In most instances, average pre-dam regulation
D2 values were highest. The proportion of gauges classified
as outliers followed a similar pattern to that of D2 values
with higher proportions of nonreference and pre-dam
regulation gauges than reference gauges within each class
(Figure 5).
Cluster stability was low for all datasets when 5% of

observations were randomly removed (Figure 6). For the
5% removal scenario, average CSI values were 0∙52 for
both the reference and intermediate datasets and 0∙60 for
the expanded dataset. Cluster stability was dramatically
higher when only two random observations were removed
from each dataset (Figure 6). For the two-observation
removal scenario, average CSI values were 0∙78, 0∙74, and
0∙93 for the reference, intermediate, and expanded datasets,
respectively. For the two-observation removal scenario, 10
of the 12 reference classes were indicative of true patterns
(CSI> 0∙6) whereas only 4 of the 12 reference classes were
highly stable (CSI> 0∙85). For the same scenario, 14 and
15 of the intermediate and expanded classes, respectively,
were indicative of true patterns. For the same scenario, all
15 expanded classes were highly stable whereas only five
intermediate classes were highly stable.
es (D2) and the proportion of outliers for reference, nonreference, and pre-
the multivariate centroid occupied by reference gauges in the expanded
f breaks in D2 distributions (see Methods section).

c domain in the USA. Ecohydrol. 7, 903–926 (2014)



Figure 6. Cluster stability index (CSI) of reference, intermediate, and
expanded classes for two simulations, randomly removing 5% of
observation and two observations from each dataset. The lower dashed
line (CSI = 0∙6) is indicative of a threshold above which true patterns in the
data emerge. The upper dashed line (CSI = 0∙85) represents a threshold for

highly stable clusters.
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Class descriptions, geographic affiliation, and class
comparison

Within the reference and expanded classifications, distinct
classes emerged ranging from unstable intermittent streams to
stable high-runoff streams (Figure 7 and 8, Tables I and II).
The expanded classes were either expansions or merging of
one or more existing reference classes. For example, the
reference classification had four intermittent-type stream
classes whereas five intermittent classes were represented in
the expanded classification (Figure 7 and 8, Tables I and II).
The hydrologic variables displaying the most distinction
among classes in both classifications were daily variability,
intermittency, maximum flows, and rise rates (Figure 9). One
exception was that baseflows and low flows seemed to show
more class separation in the expanded dataset (Figure 9).
For the reference classification, classes displayed some

regional affiliation; however, there was substantial spatial
overlap (Figure 7). Four classes showed varying degrees of
duration of intermittency and high flows (Table I). The harsh
Published 2013. This article is a U.S. Government work and is in the public
intermittent class had extremely long intermittent periods
punctuated by episodic flood events and was primarily situated
in the south-west. The intermittent flashy (IF) class had
extended periods of no flow punctuated by smaller, longer-
duration flood events and very little geographic affiliation.
Unpredictable intermittent (1–2) classes had low predictability
and semi-flashiness (moderate frequency of high flows) but
differed in geography and timing of flow events. Perennial
runoff (PR) 1 and 2 streamshadmoderate stabilities anddistinct
seasonal extremes (high winter/spring and low summer/fall).
PR1 streams had higher baseflows than PR2 and were found in
eastern piedmont regionswhereas PR2 streams had higher total
runoff and were found in Appalachian regions. Stable high
baseflow streams (SHBF) were situated in the south-eastern
Blue Ridge Mountains and Pacific Northwest, both of which
are characterized by high precipitation, sustained high
baseflows, and moderately high runoff. Snowmelt (SNM) 1
and 2 streams had distinct periods of late-spring maximums
during the initial SNM followed by receding flows through the
summer. SNM1 streams were isolated to the eastern Rocky
Mountains and had higher stability, higher baseflows, and early
annual minimums (during winter) than SNM2 streams. Super-
stable groundwater streams were broadly dispersed and
characterized by high baseflows and high stability, both
indications of spring-fed systems. Coastal high-runoff (CHR)
streams had later annual maximums and slightly higher
reversals (affected by tide) and were affiliated with coastal
areas of the south-east, Alaska, and Hawaii. Western CHR
(WCHR) streams were different than CHR streams in that
WCHR had lower baseflows, late annual maximum flows, and
very distinct seasonal flows (similar to PR streams).
Compared with the reference classification, the expand-

ed classification tended to show more distinct regional
affiliation (Figure 8). For example, PR1 and PR2 streams
were more segregated to the south-east and north-east,
respectively (Table II). Similarly, the SHBF streams in the
reference classification split into two separate classes in the
expanded classification: an SHBF class in the south-eastern
Blue Ridge Mountains and a stable high-runoff (SHR)
class in the Pacific Northwest (Figure 8). The SHBF class
had a higher baseflow index whereas SHR streams had
higher runoff. In the reference classification, CHR streams
were split into late-timing runoff (LTR) and glacial high-
runoff (GHR) streams after the inclusion of more gauges.
LTR and GHR showed more regional affiliation and
differed in the timing of flow events. GHR streams tended
to have higher annual runoff and higher predictability
than LTR streams. IF and unpredictable intermittent 2
streams in the reference classification were split into IF,
IF south-west, and IF2 streams. In general, most classes
in the expanded classification could be interpreted
similarly to that of the reference classification with
varying degrees of intermittency, stability, baseflows,
runoff, and seasonality (Table II).
domain in the USA. Ecohydrol. 7, 903–926 (2014)



Figure 7. Geographic locations of 12 reference classes across the continental USA.
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Reference and expanded classes were not statistically
independent (Pearson's χ2 = 10 552, df = 154, p< 0∙0001)
and showed strong association (Cramér's V= 0.748). Only
428 of the 806 gauges from Poff (1996) were represented
in our reference classification, and only 521 were
represented in our expanded classification. Reference
classes and Poff (1996) classes were not statistically
independent (Pearson's χ2 = 1244, df = 99, p< 0∙0001) but
only displayed moderate association (Cramér's V= 0∙568).
Likewise, expanded classes and Poff (1996) classes were
not statistically independent (Pearson's χ2 = 1591, df= 126,
Published 2013. This article is a U.S. Government work and is in the publi
p< 0∙0001) and displayed slightly higher association
(Cramér's V = 0∙583). Reference and expanded classes
tended to be extensions of Poff (1996) classes showing
some degree of affiliation; however, there was a large
degree of overlap, with Poff (1996) classes being
represented by multiple updated classes (Figure S3). For
example, groundwater streams (GW) streams were pre-
dominately represented by SHBF streams in the reference
classification; however, PR1, SNM2, and super-stable
groundwater streams also made up a considerable propor-
tion of the GW class (Figure S3). Likewise, PR streams
c domain in the USA. Ecohydrol. 7, 903–926 (2014)



Figure 8. Geographic locations of 15 expanded classes across the continental USA.

916 R. A. MCMANAMAY, M. S. BEVELHIMER AND S-C. KAO
were primarily represented by PR1 and PR2 streams in the
reference class yet also shared membership with seven
other reference classes.

Hydrologic and landscape predictive models

The predictive capacity of random forests for both the
reference and expanded datasets was comparable. In
addition, OOB error rates for hydrologic models built
using only IHA variables were comparable with those built
with all 110 variables. For the reference classification, the
OOB error rate was 12∙9% for the IHA variables compared
with 9∙95% for all 110 hydrologic variables. For the expanded
classification, the OOB error rate was 11∙1% for the IHA
Published 2013. This article is a U.S. Government work and is in the public
variables compared with 9∙34% for all 110 hydrologic
variables. IHA variables with higher mean decrease in
accuracy values were also similar between the classifications
and included high-flow frequency, average monthly flow
indices, and low/high flows of various durations (Figure 10).
The timing of high-flow events was more important than the
timing of low flows in the expanded classificationwhereas the
reference classification showed the opposite pattern. Low
flows of various durations were more important than high
flows in the reference classification whereas the opposite was
true for the expanded classification (Figure 10).
Important landscape predictors were also very similar

among the reference and expanded classifications (Figure 11).
domain in the USA. Ecohydrol. 7, 903–926 (2014)
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Table II. Expanded hydrologic class names, codes, descriptions, and geography.

Class Name Code Characteristics Geography

1 Intermittent flashy 1 IF1 High intermittency, long high-flow
duration

Variable but centralized
to ND and SD

2 Late-timing runoff LTR Semi-stable, late annual maximum
(different reasons for late timing
in various geographical areas
– e.g. hurricanes (FL) and
rainfall (Western))

Coastal areas but
mixed inland

3 Perennial runoff 1 PR1 Similar to PR2, but lower baseflows,
higher variability and different
timing than PR2, semi-stable

South-eastern piedmont
and mountains

4 Perennial runoff 2 PR2 Similar to SHBF but lower baseflows,
higher baseflow and different
timing than PR1, semi-stable

North-east piedmont
and mountains

5 Super-stable groundwater SSGW Very high baseflow, high stability, not
necessarily high runoff

Variable

6 Stable high baseflow SHBF High baseflows (smaller than SSGW),
stable, and relatively high runoff

South-eastern Blue
Ridge Mountains

7 Intermittent flashy SW IFSW High intermittency, long high-flow
duration, short low-flow duration

South-west California
and Arizona

8 Snowmelt 2 SNM2 Similar to SNM1, but slightly higher
baseflow, different timing of max
flows and flow durations

Western Rocky
Mountains, Great Lakes

9 Unpredictable Intermittent UI Moderate intermittency; low predictability,
semi-flashy; later annual maximum
than PR2

Eastern USA

10 Intermittent flashy 2 IF2 High intermittency, very late maximum Variable
11 Western coastal runoff WCR Distinct wet/dry seasons, early maximum,

high runoff
Western Coast (California)

12 Stable high runoff SHR Very high runoff, stable, moderate
baseflows – lower than SHBF

Upper Western Coast
(Washington and Oregon)

13 Harsh intermittent HI Extremely long periods of intermittency
punctuated by episodic flows

South-west

14 Snowmelt 1 SNM1 Distinct and consolidated periods of
runoff; stable, similar to SHBF;
early annual minimum (winter freeze);
slightly lower BF than SNM2,
different timing max flows and f
low durations

Eastern Rockies

15 Glacial high runoff GHR Highly predictable and high runoff,
annual minimum
occurs in winter (freeze), very
long high-flow duration

High-elevation areas
(Montana and Wyoming)
and arctic (Alaska)
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Landscape predictive models had OOB error rates of 25∙48%
for the reference classification and 24∙15% for the expanded
classification. Temperature and precipitation measures
(primarily monthly averages) were the most important
predictors for both classifications, whereas soils and soil
hydrology variables were less important (Figure 11).

Utility of the hydrologic classification framework

Fourteen of the 15 expanded hydrologic classes were
represented by dam-regulated gauges (Figure 12). Of the
1180 dam-regulated gauges, 229 gauges had pre-dam
regulation information, all of which were correctly assigned
to their original class using the landscape predictive model.
Published 2013. This article is a U.S. Government work and is in the public
A total of 581 gauges were classified to a different class
(i.e. outlier) using the hydrologic predictive model (random
forest) whereas only 329 were classified as outliers using
breaks in D2 values (Figure 12). Total dam storage had
significant positive effects on D values but explained only
10% of the total variation (Figure 13). Distance from dam
had significant negative effects of D values and explained
11% of the total variation (Figure 13).
DISCUSSION

We developed a series of hydrologic classifications at the
scale of the continental USA using three datasets
domain in the USA. Ecohydrol. 7, 903–926 (2014)



Figure 9. Effects of reference and expanded classes on 15 hydrologic
variables. Effect sizes were calculated as (class mean� grand mean)/

pooled standard deviation across all classes.
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representing a gradient of strict reference standards to
progressively more relaxed assumptions. We presumed that
the full variation in natural hydrology across the continen-
tal USA may be underrepresented by datasets composed of
only strict reference standards. However, including addi-
tional streamflow gauges of lower reference quality in
classifications led to minimal increases in dimensionality
(i.e. hydrologic information) at the expense of increasing
uncertainty in class membership. Although the expanded
classification created more outliers, increases in
streamflow information yielded more hydrologic classes
with higher regional affiliation and, surprisingly, higher
cluster stability. Thus, we failed to observe clear trade-
offs between the information quality and quantity.

Levels of association between our updated classifications
to that of the previous US hydrologic classification were
weak, which indicated low structural similarity (i.e. poor
nested or hierarchical structure) and considerable shared
membership in divergent classes. Obviously, the level of
hydrologic variation and resolution (gauges per unit area)
represented in smaller sample sizes will highly influence
classification solutions. However, understanding the influ-
ence of spatial extent (continent vs basin) and sample size
Published 2013. This article is a U.S. Government work and is in the publi
on hydrologic clustering outcomes, and thus, management
decisions, should be an area of future research.
Part of the utility of classification systems rests in their

ability to stratify analyses (Wolock et al., 2004). We
provide two approaches of assigning gauges to classes and
assessing potential outliers due to hydrologic alteration.
Because of their multivariate nature, classification systems
may be more robust in detecting hydrologically modified
systems (i.e. outliers) than analyses evaluating individual
hydrologic metrics or short-term patterns. Thus, in a
multivariate sense, classes can be used to quantitatively
determine if disturbed streams are functioning within the
established range of natural streamflow variability
(McManamay et al., 2012a).

Hydrologic classifications

Our reference gauge dataset was compiled according to
similar standards reported by Poff (1996) and included over
two times the sample size (1715 stream gauges). Likewise,
by including nonreference gauges and pre-dam regulation
gauges in our expanded dataset, we increased the sample
size from the reference dataset by over 50% (2618 stream
gauges). Within any dataset representing natural patterns,
increasing the sample size will increase variation, and hence
dimensionality. Underrepresented streams of unique hydro-
logic character in smaller datasets may be manifested as new
and separate classes in datasets of larger size; thus, we
presumed that classifications created using smaller datasets
may display nested structure within classifications created
from larger datasets (McManamay et al., 2012b). Although
our classes showed some evidence of nested structure with
those of Poff (1996), we observed a large degree of shared
membership among divergent multiple clusters. Likewise,
even though our reference and expanded classifications
shared 66% of gauges and were constructed using the same
methods, association values were still well below 1
(Cramér's V = 0.78). In summary, clustering outcomes
utilizing updated information are uncertain and may not
predictably nest within former classifications. Thus,
updating classifications as new information becomes
available is practically important.
Approaches to classifying the hydrology of streams have

varied considerably in terms of the underlying data used in
classification and the statistical methods (Olden et al., 2012).
Given the availability of hydrologic information, we
determined that an inductive approach utilizing stream
gauge information would be the most appropriate in
accurately representing streamflow patterns across the
USA. The appropriate applications of different clustering
approaches vary depending on the situation, and the choice
of one procedure over another can influence the outcome
(Everitt et al., 2001). The most commonly applied clustering
procedures for inductive hydrologic classifications to date
c domain in the USA. Ecohydrol. 7, 903–926 (2014)



Figure 10. Variable importance of the 32 indicators of hydrologic alteration used in random forests to predict reference and expanded class membership.
Variable importance was measured using mean decrease accuracy values (see methods).
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have been hard-clustering methods, including hierarchical
(e.g. Ward's algorithm) and partitioning algorithms (e.g.
k-means) (Olden et al., 2012). These methods require users
to determine a priori the number of clusters; however, there
are methods to determine the most parsimonious portioning
of variation (Everitt et al., 2001). Given that streams may
share similar properties with multiple classes and the number
of appropriate clusters may be unknown, we utilized a
Bayesian mixture-modelling approach that applies multiple
models and mixture components (clusters) to determine the
best solution (Fraley and Raftery, 2007). Applying multiple
algorithms is advantageous in situations where the most
appropriate model is unknown, given the data. In addition,
uncertainty and probability of class memberships can be
explicitly reported.
When streams are classified according to patterns in

natural streamflows, an obvious first step is screening
gauges for inclusion in a final ‘reference’ dataset (Olden
et al., 2012). Kennard et al. (2010a) concluded that gauges
included in spatial analyses should have at least 15 years of
record and at least 50% of overlap among gauge records in
order to minimize uncertainty among and within hydro-
logic classifications. Reference and nonreference gauges
had similar length and overlap in records; however, pre-
dam regulation gauges, although similar in record length,
did not share considerable temporal overlap with the
Published 2013. This article is a U.S. Government work and is in the public
majority of gauges. The most extensive difference in
temporal overlap was between gauges with shorter
records (typically occurring in last two decades) and
pre-dam regulation gauges (occurring no later than the
early 1980s) (Figure 3). After the reference dataset was
augmented with nonreference and pre-dam regulation
gauges, the underling variation increased only slightly.
This suggests that the reference dataset represented the
vast majority of hydrologic variation available and that
adding more gauges is questionable unless predictive
capacity increases. Although the inclusion of additional
lower-reference-quality gauges increased outliers and
increased uncertainty, the predictive capacities of cluster
solutions were not different among datasets. Ultimately,
this suggests that hydrologic classifications may be robust
against small disturbances and slight changes in climatic
regimes. However, this topic needs to be addressed more
fully in future analyses.

Limitations of our approach

Although we attempted to be thorough in our classifica-
tion approach and in our assessment of relaxing reference
data standards, there are multiple limitations to both of
these elements. First, the classification approach taken
depends largely on objectives and also has management
domain in the USA. Ecohydrol. 7, 903–926 (2014)



Figure 11. Variable importance of the top 35 landscape predictors (out of 52) used in random forests to predict reference and expanded class
membership. Variable importance was measured using mean decrease accuracy values Methods section).
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implications (Olden et al., 2012). To date, there are an
immense number of potential clustering algorithms
available (Nathan and McMahon, 1990); however, the
choice of algorithm will have highly variable results on
the same dataset (Olden et al., 2012). For example,
partition-clustering approaches, such as k-means, are
sensitive to the number of clusters and the order of the
dataset (Everitt et al., 2001). In contrast, hierarchical
algorithms, such as Ward's algorithm, are robust against
cluster numbers and dataset order but will tend to produce
classes of equal size (Everitt et al., 2001), which is highly
unlikely given hydrologic data (Poff, 1996). The outcome
is that different clustering solutions will vary in their
stability on the basis of the algorithm applied. Further-
more, all cluster procedures are influenced by the
underlying dissimilarity matrix and dimensionality, which
can be influenced if observations are removed (Hennig,
2007). Although the Bayesian mixture-modelling ap-
proach we applied is a very flexible method, cluster
solutions may be unstable because the optimal covariance
matrix model selected by BIC may change with the
removal of samples. In our case, the optimal covariance
matrix models (VVV or VEV) remained consistent for all
cluster solutions for the reference, intermediate, and
expanded datasets (Figure 4A). With the removal of two
Published 2013. This article is a U.S. Government work and is in the publi
observations from each dataset, average CSI values for
clusters ranged from 0∙78 in the reference dataset to 0∙93
in the expanded dataset, which suggests fairly high
stability. Comparisons of cluster stability for Bayesian
mixture models and hard-based clustering methods have
not been reported in literature; thus, it is difficult to
ascertain whether mixed-model cluster approaches are
more or less stable than other approaches.
Another difference in our approach is that most

clustering approaches hard-assign streams to classes, i.e.
streams do not share membership with other classes.
However, realistically, hydrologic data do not always fall
neatly into separate categories, and stream classes may
overlap in multidimensional space (Olden et al., 2012).
Because of the uncertainty associated with class member-
ship and uncertainty in clustering algorithms, we chose to
apply a fuzzy clustering procedure, which provides some
probability that a given stream could, in fact, belong to all
classes. Each observation was then assigned to the most
probabilistic class, and uncertainty of misclassification was
quite low. The limitation of this approach, however, is not
in the probabilistic approach but in the interpretation of
results. Typically, managers find uncertainty problematic
when associated with classifications, especially hydrologic
classes aimed to support environmental flow decisions. In
c domain in the USA. Ecohydrol. 7, 903–926 (2014)



Figure 12. Dam-regulated streams assigned to expanded hydrologic classes using landscape random forest predictive model (top). Gauges designated as
outliers (red) within each class in association with total dam storage (bottom).
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addition, managers are likely to desire classifications
uninfluenced by removing random subsets of the data.
Although uncertainty in classification solutions will vary
from the clustering algorithm and classification approach
chosen, uncertainty will always exist no matter the
approach; the key challenge is whether uncertainty is
quantified, explicitly reported, and then accepted.
The other main focus of our paper was the balance

between maximizing hydrologic information while ensur-
ing reference data standards are met. While we attempted to
construct datasets representing a gradient from strict
standards to more relaxed assumptions, we admit that a
Published 2013. This article is a U.S. Government work and is in the public
more thorough analysis is required to fully address the
hypothesis posed here. For example, a robust analysis
aimed at quantifying the trade-offs between data quality
and quantity might include developing a stronger gradient
of data quality with highly disturbed streams being one
endpoint. By using quantitative measures, an optimal
solution could then be determined between two opposing
endpoints: the highest-quality reference gauge information
available versus gauges highly modified by anthropogenic
disturbance. Within the current study, the nonreference and
pre-dam regulation gauges did not truly represent a highly
disturbed endpoint, but a semi-reference endpoint.
domain in the USA. Ecohydrol. 7, 903–926 (2014)



Figure 13. Squared Mahalanobis distances (D2) plotted versus total dam
storage (A) and versus downstream distance from the nearest major dam (B).
Major dams are ≥15m in height and/or ≥6167Ml in storage capacity.
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Hydrologic and landscape predictive models

Because classification systems organize information into
similar groupings, classes represent the relationships within
and among groups and the laws governing those relation-
ships (Melles et al., 2012). On the basis of class
membership, general patterns among classes can be
inferred and used to develop hypotheses and effectively
communicate how systems behave (Melles et al., 2012). In
light of this reasoning, developing models to predict class
membership can provide a framework to classify new
observations and to determine the variables important in
distinguishing classes.

We developed a hydrologic and landscape predictive
model that can be used to assign streams to classes
depending on the availability of information. Our hydro-
logic predictive models were highly accurate (87–90%) and
exceeded the predictive capacities for hydrologic classifi-
cation models reported elsewhere (e.g. 81%, Kennard
et al., 2010b; 85%, McManamay et al., 2012c). Random
forest models developed solely from 32 IHA variables
performed similarly to models developed from all 110
hydrologic variables, which supports the assertion that IHA
variables explain the majority of variation found in
available hydrologic metrics (Olden and Poff, 2003). IHA
metrics important in discriminating among classes were
high-flow frequency, average monthly magnitudes, and, to
Published 2013. This article is a U.S. Government work and is in the publi
a lesser extent, low and high flows of various durations.
For all 110 variables, monthly flow indices (average, max,
min, and cumulative annual variation in flow) dominated
the most important hydrologic variables (Figure S1).
Monthly flow indices were also the most important
variables discriminating among classes within a south-
eastern hydrologic classification (McManamay et al.,
2012b). The importance of monthly flows in discriminating
classes may not be surprising because they comprise a
considerable portion (12/32) of the IHA indices (Richter
et al., 1996) and a large portion (55/171) of all 171
hydrologic metrics (Olden and Poff, 2003). Monthly flows
provide consolidated indices of various flow magnitudes
and the seasonal timing in which they occur, and they have
been widely used in developing environmental flow
recommendations for river systems (Magilligan and
Nislow, 2001; Pyron and Neumann, 2008; Gao et al.,
2009). In addition, monthly indices are interpretable and
easily calculated in the absence of statistical software or
input data types required for statistical software.
In the absence of sufficient natural hydrologic informa-

tion, landscape variables can be used to assign streams to
classes with fairly high accuracy. Within our analysis,
temperature and precipitation variables had the highest
explanatory power in discriminating among hydrologic
classes compared with soils and soil-hydrology-related
factors. Random forests produced models with accuracy
rates of 74–76%, which is comparable with estimates from
other studies. For example, Kennard et al. (2010b) reported
an accuracy rate of 62% using environmental variables to
discriminate among 12 Australian flow classes whereas
Liermann et al. (2012) reported 75% accuracy for
discriminating among seven flow classes in Washington
(USA). In terms of predicting hydrologic class membership
using landscape predictors, the highest reported accuracy
we found was 87% in discriminating among four flow
classes across Washington, Oregon, and Colorado
(Sanborn and Bledsoe, 2006). Climate typically governs
streamflow patterns at the continental scale (Carlisle et al.,
2010; Kennard et al., 2010b; McManamay et al., 2012c)
whereas at basin-wide or regional scales the relative
importance of localized factors, such as soils and
topography, increases (Carlisle et al., 2010; Knight et al.,
2011; McManamay et al., 2012c). However, climate
predictors explained the majority of variation in flow
classifications developed for state or regional areas in the
western USA (Sanborn and Bledsoe, 2006; Liermann et al.,
2012). Thus, the relative importance of landscape variables
in predicting hydrology will likely depend on scale and
location (Carlisle et al., 2010).
The availability of hydrologic data across the landscape

remains one of the largest challenges in determining
relationships between flow and ecology (Knight et al.,
2008; Poff and Zimmerman, 2010). Thus, predicting the
c domain in the USA. Ecohydrol. 7, 903–926 (2014)
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natural flow regime for ungauged sites has received
considerable attention in recent years (Sanborn and Bledsoe,
2006; Zhu and Day, 2009; Carlisle et al., 2010; Knight et al.,
2011; Murphy et al., 2012). The accuracy of models
predicting individual hydrologic metrics can vary consider-
ably with hydrologic metric, scale, and location (Sanborn and
Bledsoe, 2006; Carlisle et al., 2010; Knight et al., 2011).
However, Sanborn and Bledsoe (2006) suggested that models
predicting hydrologic classes, rather than hydrologic metrics,
may provide higher accuracies. Because streamflow regimes
are characterized by multiple aspects of the hydrograph
(magnitude, timing, frequency, duration, and rate of change)
(Poff et al., 1997), it is reasonable to assume that multivariate
groups may be more representative of stream hydrology than
individual metrics.

Utility of the hydrologic classification framework

Hydrologic classes provide a contextual basis for developing
generalities in hydrologic disturbances (i.e. commonalities in
how streams response to disturbance). In addition, hydrologic
classes provide a means to stratify hydrologic-mediated
responses of ecological systems to disturbance (Arthington
et al., 2006; Poff et al., 2010). Generalizing the hydrologic
response of a stream to a given disturbance can provide
information to guide future landscape and resource develop-
ment, provide regional management strategies, and establish
conservation priorities. More specifically, hydrologic classes
provide a quantitative basis for establishing thresholds or
sustainability boundaries for allocating water (Richter, 2010).
We provided a method for detecting outliers for streams

according to their hydrologic class membership. Extrapo-
lating hydrologic class membership to ungauged locations
can be highly advantageous in determining the degree of
hydrologic alteration in situations where natural flow
information is missing, as in the case of regulated systems
that lack pre-dam regulation data.
Determining the degree of hydrologic alteration on the

basis of individual metrics has been applied in many
settings and has been shown to successfully produce
environmental flow recommendations (Richter et al., 1996;
Mathews and Richter, 2007). However, in addition to
univariate approaches, it may be appropriate to determine
whether a regulated stream is functioning within the normal
multivariate bounds of streamflow (i.e. hydrologic class
membership). Our results suggest that multivariate dis-
tances from classes can be predicted; however, more in-
depth model building will be required to increase predictive
capacity and quantitatively generalize disturbances.
CONCLUSIONS

We developed updated hydrologic classifications at the scale
of the continental USA that can be used as a framework to
Published 2013. This article is a U.S. Government work and is in the public
develop and test hypothetical relationships between flow
alteration and ecology. Because classifications should be
updated as new information and novel approaches become
available, we envision that hydrologic classifications will
continue to be reproduced at the spatial and temporal
resolutions needed to suit the specific needs of managers.
Our results indicate that multivariate approaches (i.e.
classifications) may expand the sample size of hydrologic
information potentially available to analyses evaluating
patterns in natural flow. Limited availability of hydrologic
information and the need for extrapolating hydrologic
information to ungauged locations for ecological analyses
have been on the forefront of ecohydrology (Carlisle et al.,
2010; Eng et al., 2012). However, a common and necessary
step in evaluating natural flow patterns is to screen gauges for
reference quality and temporal resolution. The inclusion of
gauges of lower reference quality increased cluster stability
and onlyminimally increased dimensionality at the expense of
increasing outliers and uncertainty. Including nonreference
quality gaugesmay be inappropriate in univariate approaches;
however, low-disturbance streams may be included in
multivariate analyses assessing patterns of natural flow with
fairly low uncertainty. Trade-offs among information quantity
and quality in relation to hydrologic classifications should be
explicitly tested under more rigorous approaches. For
example, to fully test this hypothesis, datasets could be
constructed that include stronger opposing endpoints than that
found in our analysis (e.g. gauges representing the highest
reference quality and those representing the most disturbed
quality). Classification solutions that optimize the balance
between dimensionality, predictive capacity, and uncertainty
would be preferred.
Hydrologic classifications provide a contextual framework

for organizing hydrologic information, stratifying analyses,
generating broadly applicable relationships, and providing
building blocks to support environmental flow standard
development. Although characterizing streams by their flow
patterns has been an active area of research, determining the
ability of hydrologic classes to predict ecological patterns has
been poorly documented (but see Monk et al., 2006;
Chinnayakanahalli et al., 2011). Furthermore, there is poten-
tially a greater need to use ecological data to refine hydrologic
classifications (i.e. supervised classifications) to ensure classi-
fications are relevant to ecology and instream flow needs (Poff
et al., 2010). Thus, to support assessments of ecological
responses of hydrology-mediated disturbances, approaches that
use ecological and hydrologic information simultaneously in
classifications should be an area of active research.
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