

Resilience Metrics for Energy Systems

Henry H. Willis

April 29, 2014

RAND JUSTICE, INFRASTRUCTURE, AND ENVIRONMENT

Resilience is a complex concept

October 19, 2010

There are many ways to define resilience

- For today, it is not important to debate
 - How terms relate
 - Where terms overlap
- Most important to understand
 - What system is being measured
 - What properties are of interest
 - What audiences seek metrics
 - What decisions are made using metrics

Guidelines for measuring resilience

- Resilience describes the state of service from a system in response to a disruption
- Metrics should be selected based on who is measuring resilience and why

Guidelines for measuring resilience

- Resilience describes the state of service from a system in response to a disruption
- Metrics should be selected based on who is measuring resilience and why

Resilience describes the state of service from a system in response to a disruption

Resilience depends on...

- Type of service
 - Line workers to a response
 - Power to a community
 - Transportation for commuters
 - Income to a region
- Type and extent of disruption
 - Pandemics, hurricane, floods, earthquake, geomagnetic storms, cyber attacks, events now and in the future
- System design, operation, and response
 - Redundancy
 - Maintenance
 - Response

Different <u>systems</u> will have different resilience to the same disruption

Time (days)

Different <u>responses</u> will lead to different resilience at different <u>costs</u>

Time (days)

Resilience of a system also depends on the time scale considered

Time (years)

Guidelines for measuring resilience

- Resilience describes the state of service from a system in response to a disruption
- Best metrics depend on who is measuring resilience and why

Inputs

What is available?

- Budgets
- Equipment
- # of spare parts
- # of generators
- # of line workers

What is available?

How are inputs organized?

- Response teams
- Plans
- Aid agreements
- •Smart-grid tech

- Outage detection
- Line repair
- Backup delivery
- Outage restoration

- Energy delivery
- Efficiency
- Reliability

- Hardness
- Robustness
- Sustainability

- Economic activity
- Costs and damage
- Human welfare

Metrics support both strategic and operational decisionmaking

Strategy Perspective

There is not a single set of metrics for all purposes

Selecting metrics requires balancing validity, reliability, and practicality in as few metrics as possible

Summary

- Resilience can be evaluated for different systems, disruptions, responses, and time-scales
- Metrics can describe inputs, capacities, capabilities, performance, or outcomes
- Metrics must be selected for a purpose
- Selecting metrics requires considering conciseness, comprehensiveness, validity, reliability and practicality

Questions for discussion

- What resilience outcomes are stakeholders most concerned about?
- What are stakeholders' needs for resilience metrics?
- What analysis are you doing that must take resilience into account?
 - In what context (risk assessment, investment analysis, etc.)
 - How are you doing that?
- Are existing metrics adequate?
- What resilience metrics are currently codified in Federal or state regulations, and are they adequate?
- What specific metrics are most useful?

