

ASCEM Software Capabilities and Performance Assessment Deployments

Greg Flach

ASCEM Site Applications Team

Performance & Risk Assessment Community of Practice Technical Exchange Meeting

December 11-12, 2014

Las Vegas NM

ASCEM Points of Contact

HPC Thrust

- David Moulton (moulton@lanl.gov; 505-665-4712)
- Platform Thrust
 - Vicky Freedman (vicky.freedman@pnnl.gov; 509-372-4067)
- Site Application
 - Mark Freshley (<u>mark.freshley@pnnl.gov</u>; 509-372-6094)
- Regulatory User Liaison
 - Roger Seitz (<u>roger.seitz@srnl.doe.gov</u>; 803-725-8269)
- Program Management
 - Paul Dixon (<u>p_dixon@lanl.gov</u>; 505-699-1744)
 - Justin Marble (justin.marble@em.doe.gov; 301-903-7210)
- DOE EM-12 Director
 - Kurt Gerdes (<u>kurt.gerdes@em.doe.gov</u>; 301-903-7289)

- Standardized and consistent modeling approaches across DOE Complex
- Tools that help <u>explain complex information</u> in an understandable way to all constituents (e.g, public, regulators)
- Capability to <u>explore problems in greater detail</u>
 - Manage uncertainty and reduce reliance on over-conservatism that can lead to costly decisions
 - Scientist determines desired complexity

Advanced Simulation Capability for Environmental Management (ASCEM)

≻HPC (Amanzi) Thrust

- State-of-the-art subsurface flow and reactive transport simulator
- Designed to take advantage of modern computing architectures (e.g., multiple cores)

Platform (Akuna / Agni / Velo) Thrust

- Integrated toolset to address entire modeling workflow:
- Amanzi simulation, visualization, UQ, SA, PE, data management, and more

Site Applications Thrust

ASCEM testing, demonstration and deployment

Amanzi Multi-Process Flow and Reactive Transport Simulator

Salient Features

- Selection of governing equation
 - Transient unsaturated flow with Richards equation
 - Transient single-phase flow with specific storage/yield
- Uniform interface to access existing biogeochemistry codes thru Alquimia
 - PFLOTRAN
 - CRUNCHFLOW
- Meshing
 - Internal mesh generation for rectangular domains
 - Unstructured with polyhedral cells
 - Block-structured adaptive mesh refinement
- Tight integration with Platform Software
 - Parallel computing accessible

4

ASCEM Platform and Integrated Toolsets

> Akuna

- Mesh generation
- Input file generation
 - Multiple simulations (e.g., sensitivity analysis [SA], uncertainty quantification [UQ], parameter estimation [PE])
- Results visualization
 - VisIt integration for spatial viz

> Velo

- Workflow
- Job launching and monitoring
- Data and simulation provenance and management

> Agni

- Simulation controller
- Analysis tool for SA, UQ, PE

ASCEM Platform and Integrated Toolsets

ASCEM Strengths

> High Performance Computing (HPC)

 Computational algorithms that take advantage of modern computing hardware (multiple cores)

Toolset integration

- More efficient workflows
- Automated execution of multiple simulations
 - SA, PE, UQ
- Data and simulation provenance

Cloud computing

- Enhanced collaboration
- Ready access to high-performance computing resources

Site Applications Thrust

- Guide software development
- Assist with testing and QA
- Provide site data for model testing and validation
- Conduct demonstrations of Platform and HPC capabilities

Facilitate ASCEM deployments, for example,

- Hanford Waste Management Area (WMA) C
- Savannah River H-Area Tank Farm (HTF)
- Collaboration with Cementitious Barriers Partnership (CBP)
- Savannah River F-Area Seepage Basins Plume

Waste Management Area C (WMA C)

- WMA C is located in the 200 East Area of the Hanford Central Plateau
- ➤ Tank farm consists of
 - 16 tanks
 - Waste transfer pipelines
 - Tank ancillary equipment (e.g. diversion boxes, valve boxes)
- Tanks in WMA C have stored highlevel waste from defense-related nuclear research, development, and weapons production since the late 1940s
- Multiple unplanned releases have occurred

Modeling WMA C Closure

- Preparations for final closure of WMA C is underway
 - Closure follows retrieval of as much tank waste that is technically and economically practical
 - Tanks will be backfilled with grout
 - Will be closed on site as a landfill
- The WMA C Performance Assessment will be used to evaluate risks from landfill closure (i.e., waste left in place at WMA-C)
 - To obtain a ROD, risks from wastes left in place need to be assessed

WMA C Applications

> ASCEM investigating impacts of

- Small-scale heterogeneities on flow and transport under closure and past leak conditions
- Generate multiple realizations of lithofacies distribution using indicator simulation methods
 - Each realization honors borehole data, then reproduces spatial model of lithofacies continuity between boreholes
 - Incorporates heterogeneity of lithofacies, rather than treating stratigraphic units as homogeneous layers

WMA C Applications

ASCEM investigating impacts of

> Use of orthogonal grids in representing the geologic conceptual model

SRS Submerged Waste Tank Concern

- Several SRS waste tanks are fully or partially submerged below water table aquifer
- Closure requires isolation from subsurface flow. A lowpermeability cover will not isolate these tanks from subsurface flow, unlike tanks above the water table
- The NRC has expressed the following concern:

The HTF Performance Assessment does not adequately assess waste release from the submerged and partially submerged tanks via a preferential pathway

(NRC Staff Request for Additional Information 31 July 2013)

Water Table

ASCEM Support for SRS H-Tank Farm Performance Assessment (PA)

Current base case modeling approach

- Two-dimensional axi-symmetric simulation models
- Approach suited to tanks in the unsaturated zone
- Grid sizes are limited to 10,000s nodes to achieve reasonable computational times

Challenge for Submerged Tanks

- Three-dimensional geometry required because of lateral flow
- Thin features (e.g. preferential pathway) require fine-scale mesh resolution
- Millions of nodes required
- Not feasible with current approach

ASCEM deployed to addresses challenges

ASCEM Deployment

> ASCEM Deployment

Use HPC software and hardware to achieve feasible computational runtimes

FY14 ASCEM Deployment

- Collaboration with PA Contractor to define scenario of interest to address NRC concern
- 3D mesh with local resolution of steel liners and fast-flow pathways
- Scale up of problem to millions of nodes with Adaptive Mesh Refinement

Cylindrical tank

Degraded tank configuration

Unstructured Grid Capability

Unstructured Grid Capability

Unstructured Grid Capability

Structured Grid AMR Capability

Hydraulic Head Simulation

Streamtraces

Velocity Field

Transport simulations for Sr-90 and Cs-137

Scenario refinements

- More realistic fast-flow path configurations
- Patch corrosion of steel liners
- Time-dependent material degradation

Waste Tank Performance Assessment Working Group Joint ASCEM-CBP Demonstration

- Collaborate with DOE-EM Cementitious Barriers Partnership (CBP) for interface of processes within a cement barrier
- Use ASCEM HPC processes outside the cement barrier

Interfaces (Information handoffs)

SRNL-MS-2014-00605

Savannah River F-Area: Controls on Plume migration at geochemically complex

- Savannah River F-Area; Disposal of low-level radioactive, acid waste solutions (1955– 1989) created groundwater plume (pH 3–3.5, NO₃, U, ⁹⁰Sr, ¹²⁹I, ⁹⁹Tc, tritium)
- Ongoing remediation includes capping (1989), active pump and treat (1997-2003), and pH manipulation since 2004
- Natural attenuation is desired as a long-term remediation strategy but technical underpinning is lacking.
 - U sorption as function of pH variability
 - Uncertainty: Role of heterogeneity on long term plume tails, source/recharge characteristics on plume longevity, etc.

Visualization Communicates the Results of F-Area Uranium Reactive Transport

Summary

- ASCEM represents the next-generation agile, open source, and modular computing framework that has utility for multiple DOE missions
 - ASCEM facilitates model setup, execution, analysis, and visualization
 - High performance computing enables multiple simulations of complex models with reduced computational times
 - Multiple simulation launching capability for UQ, SA, PE
- ASCEM capabilities are being deployed to support DOE-EM Performance Assessments
- > ASCEM v2.0 Community Code release anticipated in 2015

Questions?

Advanced Simulation Capability for Environmental Management Fiscal Year 2013 Annual Report

http://ascemdoe.org/

