Pipeline Research Council International, Inc.

DOE Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop

> -Industry Research for Pipeline Systems Panel

Mike Whelan Director, Research Operations

November 12, 2014

Pipeline Research Council Int'l. Overview

Founded in 1952 – Current Membership

- 39 Pipelines, over 350,000 miles of transmission pipe
 - Natural Gas and Hazardous Liquids Pipelines
 - 27 members are North American based
 - Remainder: Europe, Brazil, China, Saudi Arabia, South Africa
- Energy Industry Associations: AOPL, OTD, EPRI
- 39 Technical Program Associate Members
 - Key equipment and service providers to pipelines. Pipe mills, ILI vendors, Integrity mgmt service co's, Compressor engine mfr's

Funding

- Annual subscription based on pipeline mileage
 - 2014 R&D program size: ~\$ 10 Million

PRCI Research Program Structure

R&D Program Development Process

- Determined annually via a menu of potential projects provided by the six Technical Committees
 - Project ideas identified in winter/spring
 - PRCI Board votes over the summer finalizes in September

Technical Committees comprised of member reps

- Identify, screen & propose potential research projects
- Project teams select contractors & approve workscopes, provide general project oversight, provide peer review of results, and approve results on behalf of PRCI

PRCI Technical Committees

- Operations & Integrity
- Design, Materials & Construction
- Corrosion
- Compressor & Pump Station
- Measurement
- Underground Storage

2012 EPA GHG Inventory – Gas T&S

Activity	Methane Emissions (Mg)	Percentage of Inventory
Reciprocating Compressors	773,000	31.4%
Centrifugal Compressors (Wet Seals)	232,000	9.5%
Compressor Engine Exhaust	235,000 221,000 184,000	9.5% 9% 7.5%
Pneumatic Devices		
Pipeline Venting (O&M)		
Sub-total	1,645,000	66.9%

• Keep the product in the line!!

- Robust Pipeline Integrity Program
- 80% of current budgets

Avoid blowdowns

- Better integrity management practice and inspection technology improvements to improve understanding of exact pipe condition – avoid cutouts
- Inspection methods for unpiggable lines

Detect any product releases as soon as possible

- Maximize safety along pipeline right-of-way
- Minimize environmental impacts

PRCI Methane-Related program objectives

- Continually improve practice to minimize gas releases
 - Welding Practices & Weld Inspection
 - Optimize hot tap welding on new steels to avoid blowdowns
 - Pipeline Repair Technology & Procedures
 - Enable composite repairs & sleeves vs. cutouts and blowdowns
 - Installation practices & Long-term performance
 - Assess the Structural Significance of Defects
 - Avoid blowdowns due to unnecessarily conservative repair practices

- Enable compressor station operators to comply with EPA GHG reporting at least cost
 - Identify leak sources & remediation options
 - Develop emissions factors that are statistically valid to enable resources to be directed to remediation vs. simply measurement
- Underground Storage Committee
 - Storage Field Integrity Program
 - Minimize casing leaks, optimize ILI effectiveness

PRCI Sample Repository (Technology Development Center in 2015)

- Established a facility in Houston that provides storage and working areas for full scale pipe samples.
- Currently ~700 pipeline damage samples unique in the world
- A safe, accessible, working environment to enable <u>independent</u> trial, development and performance testing of NDE concepts
- Maintain custody & confidentiality key samples to ensure accuracy
- Reference standards, baseline samples & real-world samples

TDC External Rendering

30,000 sq.ft. building with 20,000 sq. ft. workshop area and ~10,000 sq. ft. of offices and meeting space Target opening date: May, 2015

PHMSA - ILI Enhancements Project

- Development of Industry test facility and Qualification Processes for ILI Technology Evaluation & Enhancements
- Build Pull Test Rig Develop ILI Verification Process (not develop an ILI tool specification)
- Use of Samples with known defects
- Conduct ILI tool runs with ILI vendor participation
- Responsive to NTSB Recommendation to assess ILI performance

Satellite Monitoring – Ground Movement

Erosion and slumping images along a coastal highway generated from radar interferometric measurements from space that are processed through a sophisticated algorithm.

Local Monitoring – Ground Movement

Ground Based Synthetic Aperture Radar Monitoring of Slope Stability along Pipeline ROW

ROW: Right-of-Way Automated Monitoring

- 14
- <u>ROW-3A, 3B & 3C</u>: Supplemental Testing of Full System Technology Packages for Automated Monitoring of Machinery Threats
 - Prototype Package (Integrated Hardware & Software Package) threat detection validation flights underway [Univ. of Dayton & AAAI]
 - Leak Detection (hyperspectral/IR) sensors to be integrated for validation 2015
 - Leak Detection sensor selection building upon Vapor Plume Modeling (ROW-3E) work from 2013/2014
 - Current fixed wing package also suitable for long-range UAV platform

CRDS

works

here:

15

ROW Research: Addressing Gaps

Gap between CRDS and traditional tools – main issues are time to identify and reach the leak

1,000x Higher Sensitive allows detection at greater distances

ROW-3H: Technology Development

NASA JPL Methane Detector Technology

Miniature sensor for sniffing methane on Mars

Mars version is more sensitive:

- 1 ppb in 1 sec
- Isotopes in methane

Specifications (Earth version)

- 250 g (hand carried)
- 20 ppb 1 sec
- Measures CH₄ + water
- Open-path (quick response)

ROW-3H: Miniature Methane Detection

Open-path Laser Spectrometer (OPLS)

Current validation for Handcarry device to locate/verify methane hot spots.

Operational Prototype ready for industrialization by the end of 2014

ROW-3K: Long Range UAS on a Pipeline Corridor in the National Airspace System

Objectives:

- Demonstrate operation of a long range/endurance UAS carrying the RAM Technology Package (ROW-3A/B/C) on a pipeline corridor in civilian airspace – safely, effectively and in full compliance with all FAA and FCC regulations
- 2) Evaluate the performance differences between manned & unmanned aircraft
- 3) Establish a test range for continuing research

Benefits:

- Increased safety (eliminate risk to pilots)
- Far greater endurance
- Higher precision flight profiles
- Smaller signature
- Emergency Response

Flight Services • Mission Systems

Parameter	Units	Cessna 172	RS-16 UAS
Endurance	Hours	4	12 to 16
Range	Miles	400	600+
Fuel	Gallons	52	1.5
Pilots	No.	1	0.33

ROW-3K: Long Range UAS

- Project Timeline:
- COA Application submitted with Virginia Center of Excellence
- Projected Initial flights to begin October 2014

12' Wingspan, 25 lb. payload capacity

Compressor Station Focus

- PRCI has historically focused on engines/drivers
- Gas Machinery Research Council has historically focused on gas compressors
- Good history of collaboration
- PRCI compressor-oriented work is on characterization, not technology development
- PRCI engine-oriented work primarily for criteria pollutant reduction (NOx, CO, Air Toxics)
 - Methane reduction a virtuous by-product, as improved combustion reduces misfires, which are a major source engine exhaust methane emissions

GHG Measurement Methods, Procedures, and Reporting Systems for EPA Reporting

- Objectives: Review eGGRT-GHG reported data for natural gas transmission and storage to:
 - Identify data outliers and gather additional data on the root cause of fugitive emissions
 - Conduct data analysis to develop additional emission factors to simplify future data reporting. Statistical validity from large data set

• 3 years of Subpart W data sets to work with

- Free up resources to move from accounting towards remediation and prevention
 - Let's be honest resources are not unlimited

Develop/Update GHG Fugitive Emission Factors for Gas Transmission and Storage

• Objectives:

 Improve 15 year-old GHG emission factors, which may enable operators to avoid or reduce the frequency of direct fugitive emissions measurements at affected facilities

Some final results are available to members only:

- Acoustic Leak Detection Device Performance Review
- Characterization of Natural Gas Pneumatic Device Types and Review of EPA Default Pneumatic Device Controller Vent Rates
- Nomenclature for Natural Gas Transmission and Storage Greenhouse Gas Emissions is publicly available
 - http://prci.org/index.php/pm/pubs_localdetails/?docid=655

Methods to Reduce the Carbon Footprint of Pipeline Stations

Objective

- Catalogue the opportunities to reduce carbon emissions at compressor stations
- Thermal efficiency (CO2)
- Fugitive methane (CH4)
- Final result is publicly available:
 - www.prci.org
 - Methods to Reduce the Greenhouse Gas Footprint from Pipeline Compressor and Pump Stations"
 - http://prci.org/index.php/pm/pubs_localdetails/?docid=869

Greenhouse Gas Roadmap Development

- Plan to develop an overall PRCI GHG roadmap
 - Currently each technical committee is working independently
 - Compressor & Pump Committee farthest along, but the reduction to pipeline integrity impacts (e.g., pipe repairs w/o blowdown) is not well captured
- Any resultant projects will be coordinated with larger pipeline industry initiatives to EPA/DOE

Thank you. Questions?

3141 Fairview Park, Suite 525 Falls Church, Virginia 22042 <u>www.prci.org</u>

> <u>mwhelan@prci.org</u> 630-983-2697