

VOLTTRONTM: Introduction and History

JEREME HAACK, SRINIVAS KATIPAMULA, BRANDON CARPENTER, BORA AKYOL

Pacific Northwest National Laboratory


DOE Building Technologies Office: Technical Meeting on Software Framework for Transactive Energy July 23-24, 2014

VOLTTRON Team

Proudly Operated by Battelle Since 1965

Background and Motivation

What is VOLTTRON?

Development History

DOE Funded Enhancements

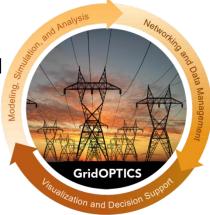
Open Source

Future Power Grid Initiative

Challenge

Accommodate Millions of Electric Vehicles

Manage Smart Loads


Integrate Renewables

Maintain Reliability

Approach

Networking and Data Management

Visualization and Decision Support

- Impact
 - Bridging operation and planning to enable seamless grid management and control
 - Integrating transmission and distribution in end-to-end grid modeling and simulation
 - Managing large-scale data in real time with high reliability and security

Technology Challenges

- Too much data, not enough information
 - Rapid deployment of networked, affordable sensors and controllers
- Scalable and fault tolerant control and diagnostics
- Secure and reliable communication
- Tight, vertical integration of single vendor products
- Lack of a cross-vendor "App Store" for Energy Applications for best of breed solutions
- Evolving standards landscape for transactive energy
- Lack of a reference platform for R&D use

Application Challenges

Managing end-use loads

Residential Commercial Industrial

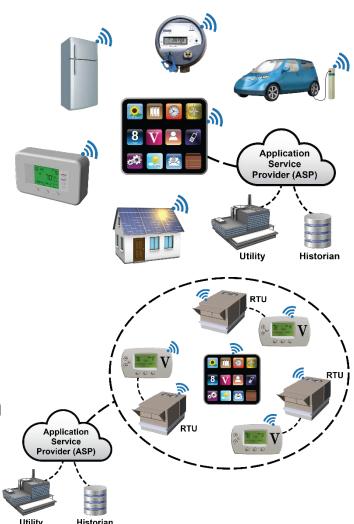
- Increasing end-use efficiencies
- Integrating variable distributed generation
 - Solar
 - Wind
- Integrating storage at multiple layers
- Integrating electric vehicles (EV)
- Enabling energy coordination and trading between buildings and trading between buildings and grid

NATIONAL LABORATOR

Background and Motivation

VOLTTRON

Development History


DOE Funded Enhancements

Open Source

What is VOLTTRON?

- VOLTTRON is an application platform (e.g. Android, iOS) for distributed sensing and control applications
- VOLTTRON is not a protocol
 - A protocol, such as SEP2.0. or OpenADR, are implemented as applications
- VOLTTRON is not an application such as demand response
 - Demand response can be implemented as an application on top of VOLTTRON
- VOLTTRON is open, flexible and already benefits from community support and development

VOLTTRON

- VOLTTRON is a platform that enables distributed sensing and controls
 - Flexible and extensible platform for allowing application developers to work with devices, external resources, and each other over a common interface without worrying about underlying details.
 - Drivers for Modbus and BACnet
 - Services for storing data, logging, accessing historical data, scheduling resources
 - Secure application packaging and communication
 - Open source, non-proprietary solution
- VOLTTRON is NOT a fully realized commercial grade product with a suite of applications already implemented to perform transactional actions
 - VOLTTRON enables application development. In and of itself, it is not an energy efficiency solution

VOLTTRON Attributes

- Open, flexible and modular software platform
 - Easy application development
 - Interoperable across vendors and applications
 - Hides power and control system complexities from developers
 - Object oriented, modern software development environment
 - Language agnostic. Does not tie the applications to a specific language

VOLTTRON Attributes (cont.)

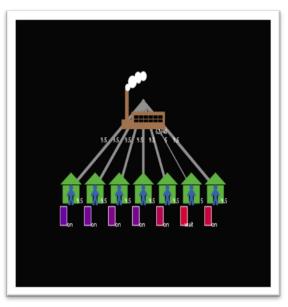
- Broad device and control systems protocols support builtin
 - MODBUS, BACNet, and others
 - Multiple types of controllers and sensors
 - Low CPU, memory and storage footprint requirements
 - Supports non-Intel CPUs
- Secure
 - Security libraries and cryptography built-in
 - Manage applications to prevent resource exhaustion (CPU, memory, storage)
 - Robust against denial-of-service (e.g. does not crash when scanned via Nmap)
 - Supports modern application development environments

Background and Motivation

VOLTTRON

Development History

DOE Funded Enhancements


Open Source

VOLTTRON LDRD

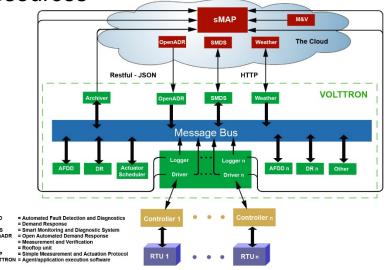
- Requirements gathering
- Initial simulations
- Build and deploy platform on demonstration testbed
- Deploy into instrumented home

Background and Motivation

VOLTTRON

Development History

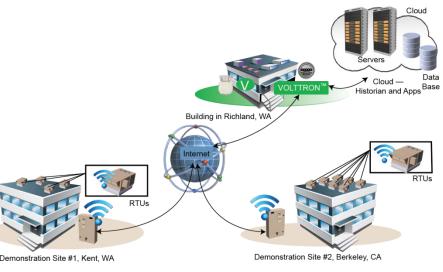
DOE Funded Enhancements


Open Source

Transactional Network

- Integrating platform for DOE funded demonstration
 - Coordinate behavior of rooftop HVAC units
 - Deploy researcher control algorithms
 - Provide single point of contact for
 - Appliances
 - Data historian
 - External resources

- Components
 - Researcher control algorithms
 - Cloud applications and resources
 - HVAC and other appliances
- Open Source Requirement
 - Re-implementation of platform omitting patented features



VOLTTRON Deployments

- Transactional Network deployment
 - VOLTTRON controlling 11 HVAC units on 2 buildings
- PNNL Deployment

18

- Deployed in PNNL building operations and control center
- Agents prioritizing devices for load reduction
- Used by VT, ORNL, LBNL, others

V = VOLTTRONT

Complementary Platforms/Services

- VOLTTRON is an open platform and can work with other platforms and services. This is not an either/or conversation
- VOLTTRON is a very general platform. Other services may provide more structure
- OpenADR Provides a DR signal that can be published to the platform for use by agents which then make control decisions
- Energy Service Interface (ESI) Could work together to provide a diverse set of services and execution environments
- IBM Prototype interaction of signals from NW SmartGrid demo data publish to VOLTTRON

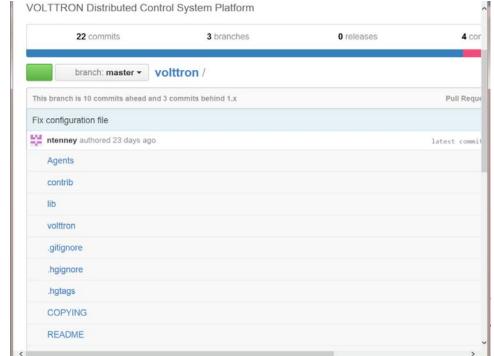
Background and Motivation

VOLTTRON

Development History

DOE Funded Enhancements

Open Source



VOLTTRON Open Source

- VOLTTRON will transition to Transactional Energy Consortium
 - Further work funded by the consortium
 - Open source community
 - Members determine priorities and provide funds to support and improve the platform

■ BTO/DOE will need to have a small role

to maintain the integrity of the user contributions (e.g. GridLab-D)

Background and Motivation

VOLTTRON

Development History

DOE Funded Enhancements

Open Source

Evolution of VOLTTRON FY10 – FY14

FY10 – FY13

- VOLTTRON Development Future Power Grid LDRD
- EV Charging
- HVAC Control
- Proof of Concepts Demonstrations

FY13

- Transactional Network Project
- RTU Controls, Diagnostics, Demand Response
- Real Time Measurement and Verification
- Autonomous RTU Controls
- MODBUS, Historian
- Proof of Concept with Multiple Sites

FY14

- Public Release of VOLTTRON 1.0, 1.1 and 1.2 and 2.0
- Security, Multi-Node Coordination, Robustness
- BACnet Support
- Lighting Diagnostics, on Demand Defrost, Intelligent Duty Cycling
- Continued Proof of Concept Demonstrations at Multiple Sites

Evolution of VOLTTRON FY15 – FY16

- VOLTTRON 3.0 Manageability, Scalability
- Connection to Many Energy Management Systems
- Initial Commercialization
- VOLTTRON Central
- Management & Monitoring Platform

FY16

- Deployment by vendors
- VOLTTRON Consortium
- Transition to Community
- VOLTTRON Agent Development Challenge

Questions?

- VOLTTRON Resources
 - Wiki: https://github.com/VOLTTRON/volttron/wiki
 - Email: volttron@pnnl.gov
 - Bi-monthly office hours

