Modeling for Market Analysis: HTEB, TRUCK, and LVChoice

Alicia K. Birky, PhD TA Engineering, Inc.

2014 DOE Vehicle Technologies Office Annual Merit Review

June 18, 2014

Project ID: VAN012

TA Engineering, Inc.

Technical Analysis and Engineering

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

TIMELINE				
	FY13	FY14		
Start Date	Oct. 2012	Oct. 2013		
End Date	Sept. 2013	Sept. 2014		
% Complete	100%	70%		

BUDGET		
Total Project Funding		
Received for FY13	\$141,306	
Funding for FY14	\$130,000	

COLLABORATIONS

□ Contract to ANL, Tom Stephens

□ Collaborations & Interactions:

- ANL: Aymeric Rousseau, Anant Vyas, Joann Zhou
- NREL: Aaron Brooker
- ORNL: Zhenghong Lin
- EIA: Nicholas Chase, Patricia Hutchins
- 21st CTP and SuperTruck program managers & industry partners

BARRIERS ADDRESSED*

Program evaluation of: progress against stated goals; program rationale; process; impact; and cost-benefit.

*from 2011-2015 VTP MYPP

Objectives and Relevance

- Overall objective develop, improve, and apply analysis tools to support program planning, management, evaluation, and reporting, relative to VTO goals to:
 - Reduce energy use and greenhouse gas emissions by enabling development of efficient and clean highway vehicles that are cost and performance competitive.
- HTEBdyn relevance:
 - Estimates benefits of heavy vehicle advanced technologies in terms of fuel consumption reduction;
 - Translates technical targets into vehicle performance benefits.
- HTEB task objectives:
 - Perform analysis in support of VTO GPRA reporting.
 - Maintain quick analysis capability.
 - Improve estimation of:
 - Interactive effects of grade, aerodynamics, and braking;
 - Waste energy availability for recovery technologies; and
 - Impact of duty / drive cycle on benefits.

Objectives and Relevance, Cont.

- TRUCK; LVChoice relevance:
 - Estimate market acceptance of advanced vehicle platforms based on performance (fuel economy) and cost;
 - Translate vehicle performance into fleet fuel and emissions savings.
- TRUCK task objectives:
 - Perform analysis in support of VTO GPRA reporting;
 - Maintain flexibility of technology specification;
 - Adjust data on truck population to better characterize vehicles targeted by DOE R&D.
- LVChoice task objectives:
 - Allow analysis consistent with NEMS methodologies;
 - Improve flexibility of scenario specification, e.g. technologies and size classes;
 - Improve user interface to automate input specification;
 - Perform analysis to support comparison to other models;
 - Analyze sensitivity of results to model structure and parameter specification.

Milestones FY13-14

Date	Milestone / Go-No Go	Description	Status		
HTEBdyn					
5/16/13	Milestone	Conduct workshop (AMR side meeting); incorporate industry comments	Complete		
4/30/14	Milestone	Develop user guide and version for review distribution, class 8.	90%		
5/30/14	Milestone	Model documentation	75%		
7/25/14	Milestone	Model validation against simulation and test data.	50%		
7/25/14	Milestone	Journal article submission	0%		
9/30/14	Milestone	Update class 4-6 characterizations.	0%		
TRUCK					
	Milestone	Update to AEO 2013; subdivide class 4-6.	Complete		
Integrated Analysis – Application of TRUCK and HTEBdyn					
12/21/12	Milestone	SuperTruck benefits analysis final report publication.	Complete		
1/6/14	Milestone	Complete analysis and documentation for GPRA 2015	Complete		

Technical Analysis and Engineering

Milestones FY13-14, Cont.

Date	Milestone / Go-No Go	Description	Status
LVChoice			
6/14/13	Milestone	Alter model to suit VTO analysis needs.	Complete
7/16/13	Milestone	Develop interface file.	Complete
9/3/13	Milestone	Add fuel availability and make/model availability algorithms	Complete
9/9/13	Milestone	Update to AEO 2013 and perform validation.	Complete
9/9/13	Milestone	Perform preliminary analysis of common inputs with sensitivity.	Complete
5/30/14	Milestone	Update to AEO 2014.	0%
6/13/14	Milestone	Final analysis of common inputs with sensitivity.	0%
9/30/14	Milestone	Analysis and refinement of FA and MMA algorithms; analysis of calibration factors.	10%

HTEB Approach

- Apply approach from legacy model that estimated power demand based on average drive cycle statistics.
- For a specified drive cycle, calculate required engine brake power P_b at each time step as a function of system losses/demands:

$$P_{b} = P_{drive} + P_{mech} + P_{elec} + P_{tran}$$
$$P_{drive} = P_{aero} + P_{rr} + P_{accel} + P_{grade}$$

 Calculate fuel consumption rate as a function of brake power, engine friction loss, and engine indicated efficiency:

$$\dot{F} = \frac{P_b + P_f}{\eta_i}$$

- Reduce engine power demand for:
 - Hybrid system contribution (regenerative braking)
 - Mechanically coupled waste heat recovery (turbo-compounding and ogranic Rankine cycle).
- Use simplified relationships that capture the performance characteristics of component systems; "black box" approach rather than detailed component modeling / simulation.

HTEBdyn Accomplishments FY13-14

- Initial development of "dynamic" formulation completed in FY13.
- Presented at 2013 workshop (AMR side meeting); incorporated industry feedback:
 - Added time lag to heat available to ORC recovery.
 - Adjusted regenerative brake recovery algorithm.
 - Hybrid system simplified and parameterized to maximize energy recovery and use; avoids attempt to design power management system.
- Improved estimation when vehicle is unable to meet the drive schedule:
 - Estimated loads are recalculated through one iteration.
 - Added schedule smoothing options to minimize harsh acceleration demand, vehicle under-speed results, and associated power imbalance.
- Improved engine friction definition and estimation.
- Added transmission options, characterized by gear ratios and shift points (rpm).
- Improved user interface:
 - Basic operation from one input worksheet using default engine parameters and default transmission.
 - User options for custom input.
- Validation in progress (Autonomie simulations, NREL fleet tests).

HTEB Accomplishments:

Validation against Autonomie Simulation

	UDDS Cycle			HHDDT65 Cycle		
	ANL	HTEB	% diff	ANL	HTEB	% diff
Conventional						
Engine Avg Efficiency	36.4%	36.7%	0.94%	40.5%	39.7%	-2.11%
Consumption (gal/100 mi)	22.7	22.9	0.97%	16.1	16.2	0.64%
Hybrid						
Engine Avg Efficiency	38.0%	37.8%	-0.64%	40.9%	40.0%	-2.26%
Brake Recovery @ wheel	74.6%	74.1%	-0.69%	57.8%	57.6%	-0.29%
Consumption (gal/100 mi)	16.2	15.8	-2.68%	15.3	15.3	0.10%
Hybrid Fuel Savings						
gal/100 mi	6.5	7.2	10.1%	0.80	0.89	11.0%
%	29%	31%	9.03%	5.0%	5.5%	10.3%

- Comparison to simulation results documented in ANL 2009 report for NAS.
- Difference between runs is strictly drive cycle or hybridization.
- Estimates of fuel consumption are within 1% for conventional truck and 3% for hybrid truck.
- HTEBdyn estimates higher benefits for hybrid; model is parameterized to maximize use of energy recovered.

TRUCK Approach

- Estimate market penetration of fuel saving or alternative fuel heavy trucks based on technology cost and value of fuel savings.
 - Fuel price projection from latest AEO.
 - Determine estimated payback period within each of eleven mileage cohorts based on VIUS data for new trucks (≤ 2 yrs).
 - Estimate adoption rate of based on distribution of required payback period (ATA Return on Investment Survey, 1997).
 - Separate calculations for four classes (3-6 gasoline, 3-6 diesel, 7&8 Single Unit, 7&8 Combination) and two refueling strategies (central, non-central).
- Compete up to 3 platforms against a baseline
 - All four vehicles may use any transportation fuel included in AEO.
 - Baseline must have the lowest vehicle purchase price.
- Include capability to consider technology preferences that are not reflected in costs (e.g., fuel availability, risk aversion, imperfect information, technical features, etc.).
- Separate model for class 4-6 trucks (vs. 3-6) for GPRA 2015.

TRUCK Accomplishments FY13-14: GPRA 2015 Sales Shares

TA Engineering, Inc.

Technical Analysis and Engineering

TRUCK Accomplishments FY13-14: GPRA 2015 Fleet Fuel Economy

Due to lower mileage of single unit (SU) class 7 & 8 trucks and long payback periods, market shares for advanced technologies are limited. As a result. combination unit (CU) truck fuel economy is projected to far exceed SU fuel economy.

LVChoice Approach / Strategy

- LVChoice model developed for NPC and adapted to suit VTO analysis needs:
 - Nested multi-nomial logit structure and coefficients from NEMS, including calibration coefficients;
 - Include subset of NEMS size classes and technologies according to interest of VTO.
- To facilitate comparison to other VC tools: develop an interface Excel file using VBA code to translate "flat" input file.
 - Compatible with original model; model can still be run independently;
 - Accessible and transparent.
- Maximize flexibility in interface file: allow user to map model technologies and size classes to any input values in the flat file.
 - Accommodates any future changes to source program (Autonomie) and availability of new source program data;
 - User may include all or a subset of both technologies and classes;
 - Not all specified inputs need to be applied in a given run.
- Maximize flexibility in interface file: specify all utility factor and fuel economy calculation parameters in the interface file.
- Include specification of all possible inputs, including those unique to LVChoice.

LVChoice Accomplishments: Benchmark Comparison to AEO

- LVChoice projects a higher overall fleet fuel economy due to differences in the car market
 - Initially due to higher TDI sales
 - In 2030-2040 timeframe, LVChoice projects higher market share for HEVs, PHEVs, and EVs.
- Some reasons for differences:
 - LVChoice does not include manufacturer decisionmaking to meet CAFE regulations.
 - LVChoice has different size classes and does not have the full NEMS technology suite.
 - "True" comparison would require a NEMS run matching these iinputs.

LVChoice Accomplishments: Sensitivity Analysis

- Base run with zero calibration coefficients and exogenous fuel availability (FA).
- All runs with endogenous make / model availability (MMA) and no early year market limits.
- Sales share of advanced vehicles is highly sensitive to calibration coefficient and FA.

Response to Previous Year's Comments

This project was not reviewed in previous years.

Collaboration and Coordination

- All projects performed under contract to Argonne National Laboratory, project manager Tom Stephens.
- Integrated analysis of heavy vehicles for GPRA:
 - Performed in collaboration with Tom Stephens (ANL);
 - Assistance with AEO inputs provided by EIA (Patricia Hutchins, Nicholas Chase).
 - Coordination of inputs with VTO program managers (Roland Gravel, Ken Howden, Gurpreet Singh).
- HTEBdyn reviews and comments provided by Aymeric Rousseau (ANL) and SuperTruck industry partners (Daimler, Cummins, Navistar, Volvo, Detroit Diesel).
- LVChoice development and analysis, coordinating with:
 - ANL Tom Stephens, Joann Zhou, Aymeric Rousseau, Anant Vyas, Deena Patel
 - EIA Patricia Hutchins, Nicholas Chase
 - NREL Aaron Brooker
 - ORNL Zhenhong Lin

Remaining Challenges

- HTEBdyn
 - Model validation lack of published test data that includes all necessary model inputs.
 - Coordinating with national labs and with SuperTruck and 21st Century Truck partners.
 - Many possible component and system configurations.
 - Configuration of hybrid and waste heat recovery systems impacts benefits.
 - Model needs to include pre-defined options with flexibility for customization.
 - Requirement to maintain quick run-time limits ability to solve power imbalance when vehicle does not meet schedule speed.
- LVChoice
 - Model comparisons complicated by sensitivity to variables that are treated differently among models, particularly fuel availability, make model availability, and calibration coefficients.

Proposed Future Work

- Update all models to latest AEO and perform analysis for GPRA 2016.
 - Analysis complete 2/28/2015
 - Documentation complete 4/30/2015.
- HTEB development:
 - Continue model validation;
 - Improve characterization of engines;
 - Characterization of gasoline engines for class 4-6;
 - Conversion of calculations to VBA or other platform to solve for vehicle speed when system is under powered;
 - Electrical coupling of TuCo and ORC systems; and
 - Add class 3 characterization.

Proposed Future Work, cont.

- TRUCK development:
 - Research and analyze data (population distribution by annual mileage) for class 3 commercial trucks.
- LVChoice development:
 - Analysis of fuel availability and make model availability algorithms and validation of results.
 - Model restructuring to increase flexibility; i.e. easily accommodate changes to technology suite.
 - Generic technologies with automated mapping to logit nests.
 - Fuel specification flexibility.
 - Add integrated model of producer decision-making to allow consideration of CAFE and ZEV mandates.
 - Endogenous calculation of new vehicle fuel economy and price.

Summary

RELEVANCE	 HTEBdyn, TRUCK, and LVChoice provide a toolset to support VTO program planning, management, evaluation, and reporting. Models translate program technical targets into future fuel consumption and greenhouse gas reduction benefits.
APPROACH	 Build on legacy models/tools; Use methodologies based on engineering fundamentals, market data, and consumer behavior theory; and Maximize flexibility and ease of use.
ACCOMPLISHMENTS FY13-14	 Tools refined to increase ease of use, add flexibility, add features, and enhance quality of analysis results. Model validation / calibration / comparison is in progress.
COLLABORATIONS	Work conducted in collaboration / consultation with experts at DOE, EIA, national labs, and industry partners
FUTURE WORK	Expand the scope of the models to enhance coverage of the technologies and applications in the VTO R&D portfolio as well as spillover benefits in other applications.
TA Engineering, Inc.	20

Technical Backup

Technical Analysis and Engineering

TRUCK Methodology

- Adoption rate (AR) determined from one of three curves (user selected).
- Most "aggressive" represents stated preferences
- Two remaining curves represent levels of risk aversion.

- AR curve is neutral to magnitude of incremental cost.
- Willingness to adopt is limited by availability of capital and perception of risk.
- AR is reduced with increasing cost

HTEBdyn Methodology: Engine Friction

 Engine friction includes all losses that vary with engine speed and is calculated from the friction mean effective pressure (fmep):

$$fmep = k_0 + k_1 \cdot \omega + k_2 \cdot \omega^2$$
$$P_f = \frac{1}{2} \cdot fmep \cdot D \cdot \omega$$

- k_0 : boundary friction; power varies with ω
- k_1 : viscous (hydrodynamic) losses; power varies with $\omega 2$
- k_2 : losses due to turbulence; power varies with ω 3
- Includes losses due to:
 - Rubbing and reciprocating friction (crankshaft, valve train, etc.);
 - Engine auxiliaries (oil, water, fuel pump); and
 - Pumping losses due to gas exchange and fluid flows.
- Method is from PERE and consistent with Heywood (1988).

LVChoice Methodology: Nested Multi-nomial Logit Formulation

Market share of advanced vehicle *i* (AV_i) within a size class is the probability of purchase based on relative utility:

$$P_i = \frac{e^{\sum_j \beta_j \cdot x_{i,j}}}{\sum_i^N e^{\sum_j \beta_j \cdot x_{i,j}}}$$

Where

 $\begin{array}{l} x_{i,j} = \text{value of attribute } j \text{ for AV}_i \\ \beta_{i,j} = \text{coefficient on attribute } j \\ \text{Utility from selecting vehicle } i \text{ is: } U_i = \sum_j \beta_j \cdot x_{i,j} \\ N = \text{total number of vehicle technologies} \end{array}$

Note that the coefficients differ among size classes.

LVChoice Methodology: Vehicle Attributes

Attribute	Notes
Vehicle Price	Specified or calculated from production cost
Fuel Cost	Per GGE
Range	
Battery Replacement Cost	Cost currently = 0
Acceleration, 0-60 mph	
Home Refueling for EVs	Dummy (1,0)
Maintenance Cost	
Luggage Space	
Fuel Availability Coefficient 1	% of stations; exogenous or endogenous = f(est. stock)
Fuel Availability Coefficient 2	Utility due to FA is an exponential function
Make/Model Availability	Index to conv.; Exogenous or endogenous = f(3-yr avg share)
Technology Set Gen. Cost	Calculated per NEMS
Multi-Fuel Gen. Cost	Calculated per NEMS
Calibration coefficient	Specified annually per NEMS or static value

- LVChoice uses the same attributes as NEMS; coefficients are based on NEMS.
- Endogenous FA and MMA calculations based on NEMS algorithms.

