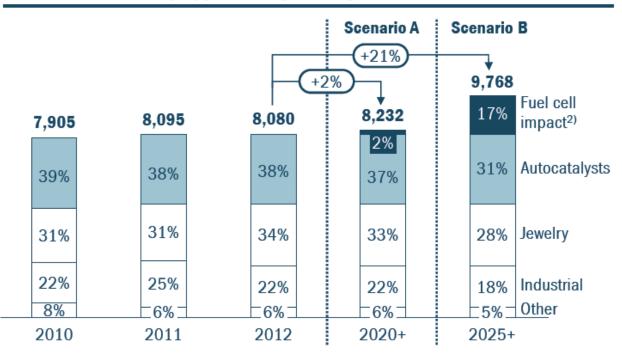
Are we there yet? No! Pt-alloy catalysts

Anu Kongkanand and Swami Kumaraguru General Motors Global Product Development, Fuel Cell Activities

> Present to the DOE DWG-CWG June 16, 2014


Thanks to Jingxin Zhang, Craig Gittleman, and Mark Mathias

Outline

- Catalyst long-term targets
- Low PGM cathode
- Pt surface area loss
- Catalyst support

Long-term Catalyst Targets

Platinum demand¹⁾ by application ['000 oz]

Comments

Scenario A:

Next-generation technology will reach 0.15 mg/cm² platinum load in the MEA – By 2020, a global production volume of 300,000 vehicles is assumed

Scenario B:

FCEVs will improve significantly in costs and required platinum load decreases to <0.10 mg/cm² in the MEA. FCEVs become a global success story with a yearly production volume of 5 million units

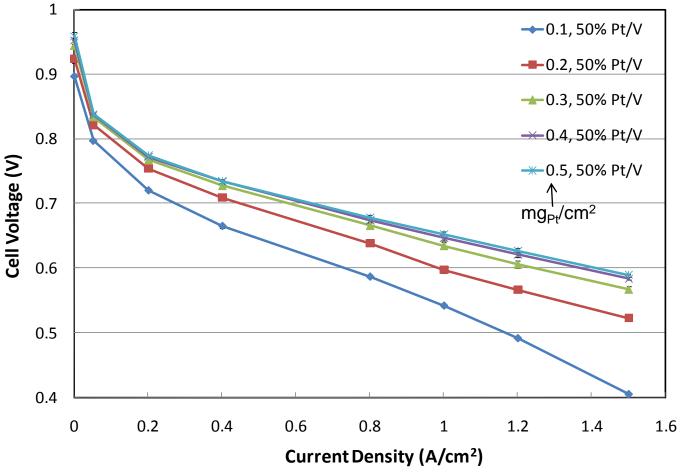
1) Excluding movement in stocks 2) Underlying assumption: 300,000 FCVs with each 16 g platinum in Scenario A, 5 million FCVs each with <10 g platinum/vehicle in Scenario B Roland Berger study, 2013 Source: Johnson Matthey: Roland Berger

- Even at 10 g-Pt/veh, Pt demand/supply will shift, putting pressure on Pt price.
- Need to cut Pt usage to the replacement level of IC engines (2-8 g-Pt/veh).
- Can we get people to use less Pt for jewelry?

Beyond 2020

Table 5. Technical Targets for Electrocatalysts From FCTT Roadmap, June 2013

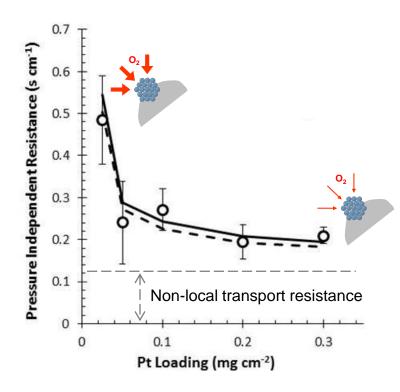
Characteristic	Units	Status	2020 Target	
Platinum group metal (PGM) total content ^a	g/kW rated	0.14 ^b	0.125	→ 11.25 g-PGM/veh
PGM total loading ^a	mg PGM/cm ² electrode area	0.15 ^b	0.125	
Mass activity ^f	A/mg _{PGM} @ 900 mV _{iR-free}	0.47-0.67 ^b	0.44	


- In the long term, we will need to continue cutting PGM (especially Pt) usage down to IC engine level (2-8 g-Pt/veh) → <0.08 g_{Pt}/kW (>36% reduction from current target)
 - Increase ORR mass activity (0.8 A/mg_{Pt}??) to maintain efficiency
 - Increase ECSA (>100 m²/g_{Pt}) for high power performance
 - Increase current density at rated power by improving mass transport
- NEDO by 2030 aims for <5 g_{Pt}/veh,

Low PGM cathode

Low-loaded catalysts (Pt or Pt-alloy) give unexpectedly worse performance at high current density in air

32% RH in, 80°C, 150 kPa-out, 1.5/2 Stoich, H₂/air



• From simple kinetics (constant 70mV/decade Tafel slope, expect parallel curves, 20 mV lower for each halving of loading

• Expect transport losses to be less for lower-loaded (thinner) electrodes

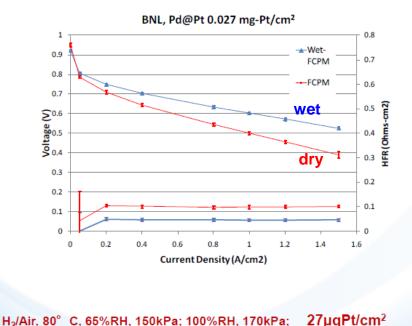
Data here and to follow from T. Greszler, S. Kumaraguru, N. Subramanian, B. Litteer, Z. Liu and R. Makharia, Fuel Cell Seminar, 28 Oct 2008 [GM]

Effect of *local* O₂ transport resistance increases with decreasing Pt surface area

Inverse of roughness factor $R_{O_2}^{P,ind} = R_{O_2}^{Knudsen} + \frac{A_{electrode}}{A_{Pt,surface}} R_{O_2}^{local}$

- Owejan et al., J. Electrochem. Soc. (2013) F824.
- Greszler et al., J. Electrochem. Soc. (2012) F831.

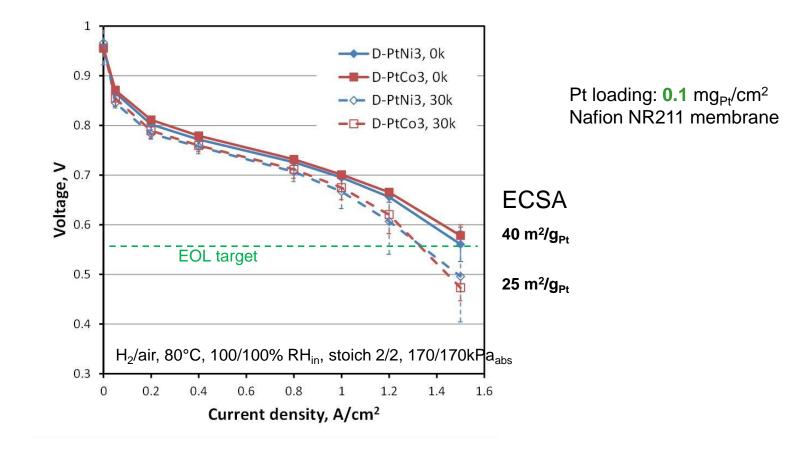
 Voltage at high current density will decrease quickly if Pt roughness factor is lower than a certain value.



High Pt ECSA of Pt ML catalyst enables excellent highpower performance at very low loading

GM data from Adzic et al. 2012 AMR

H₂/air fuel cell polarization curves of Pt/Pd/C


- The ORR activities comparable to literature were reproduced in MEA and RDE.
- Very impressive fuel cell performance with low Pt loading was observed on (at least) Pt/Pd/C.
- Poor performance of two other catalysts are most likely due to their thick cathodes.
- Future tests with higher metal contents preferred

A. Kongkanand, J. Zhang, F. Wagner

 Long-term target (<8 g-Pt/veh) can be achieved, even with current understanding of local O₂ transport, if Pt ML catalysts become mature.

State-of-the-art Pt alloy at 0.1 mg/cm²

- After aging, Pt ECSA loss causing high-power performance loss.
 - \rightarrow Must find ways to mitigate ECSA loss

ECSA loss / Pt dissolution

ECSA loss, Pt dissolution

- Even with good Pt alloy with durable ORR activity, Pt dissolution remains a concern.
- Especially on low-loaded cathode, Pt dissolution causes ECSA loss, and in turn high power performance loss.

Mitigate Pt dissolution

1. Materials solution Example: Au cluster on Pt surface

0

10 000

2. Operational solution Example: lowering upper voltage limit

Wagner et al. Handbook of Fuel Cells Ch.16

30 000

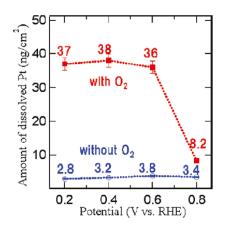
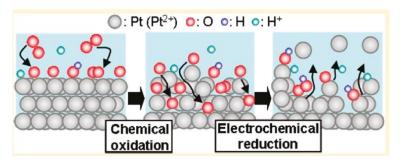
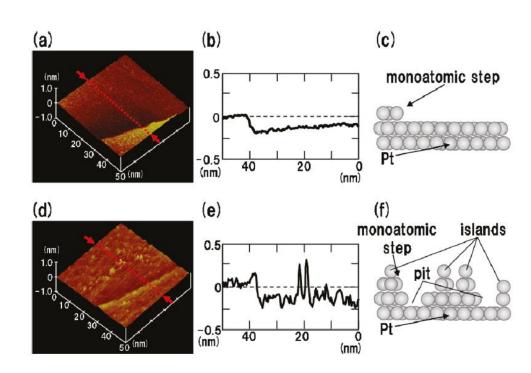
40 000

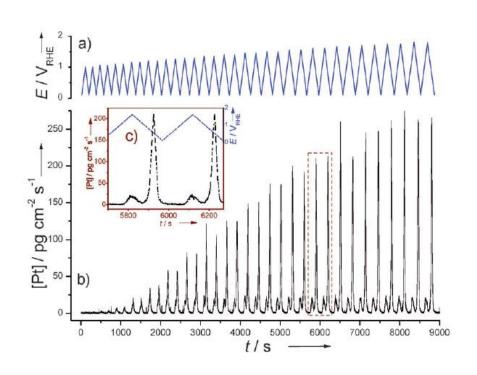
20 000

Number of cycles

Understanding gap: Pt dissolution accelerates under O₂

Matsumoto et al., JPCC 2011


Figure 4. Amount of dissolved platinum in constant potential polarization experiments under $\rm N_2$ (blue) and $\rm O_2$ (red). Overall polarization time was 50 h.

- In presence of O₂, place-exchange occurs even at low potential, causing cathodic dissolution of Pt.
- GM confirmed sub-surface oxygen at low potential on Pt/C (JPCC 2012)
- What does this mean to us? How can we better avoid Pt dissolution?

New tools: Realtime-resolution electrochemical ICP-MS

Mayrhofer and coworkers, Angew. Chem. 2012

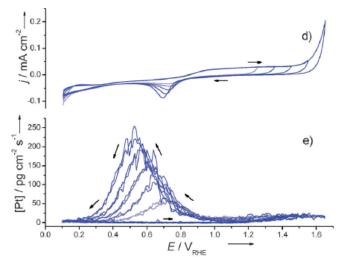


Figure 1. a) The applied experimental sequence in 0.1 M HClO₄, consisting of two cyclic voltammograms with a scan rate of 0.01 V s⁻¹ for each potential window that always start from +0.1 V_{RHE} to an upper potential limit between +1.0 and +1.8 V_{RHE} raised in steps of 0.05 V_{RHE}. b) Corresponding time-resolved dissolution profile of Pt presented on the same time axis as in (a). c) A magnification on the region around 6000 s. d) Representative cyclic voltammograms with e) their corresponding mass-spectrometric voltammograms.

- Measure Pt dissolution in real time.
- Enable more detail mechanistic study to guide selection of operating condition.
- Help develop new catalysts.

Catalyst support

Catalyst Support

- Support forms a foundation for catalyst deposition, one cannot independently do support development without thorough knowledge of catalyst deposition.
- Such knowledge is held confidential by suppliers. Therefore, *cathode* catalyst support development should be left for private sector.
- Anode catalysts have less stringent requirements and are an area of great importance by offering potential saving by eliminating certain system controls and cell voltage monitoring.
- It is more easy to avoid high-voltage exposure on the cathode than on the anode.

Anode: Area of interest

- 1. Corrosion resistant support for anode
- 2. Anode catalysts with a high Pt surface area, or the removal of PGM all together

Future Foci

- Cathode catalyst
 - → High ECSA
 - More-aggressive core-shell alloy catalysts
 - Monolayer catalysts
- Anode catalyst
 - → High ECSA on corrosion-resistant support
- Learn to mitigate Pt dissolution.
 - \rightarrow Materials solution
 - \rightarrow Mechanistic study to guide operation