
A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO₂

2014 Building Technologies Office Peer Review

Cross-section of ISTN XPS board

ISTN XPS board produced in factory demonstration

Dr. Arthur Yang, ajyang@istninc.com, ISTN

Project Summary

Timeline:

Start date: January 1, 2014

Planned end date: December 31, 2015

Key Milestones

- 1. Insulation value of R-6 per inch, pore geometry and orientation created by the foam extrusion process with 97% porosity (30 kg/m^3 density) and full-scale manufacturing costs of $< \$0.40/\text{ft}^2$; 12/31/14
- 2. Insulation value to R-9 to R-10 per inch with foaming density less than 30kg/m^3 and full-scale manufacturing costs of $< 0.70/\text{ft}^2$; 12/31/15

Budget:

Total DOE \$ to date: \$50,000 Total future DOE \$: \$350,000

Target Market/Audience:

Residential/commercial buildings and new construction.

Previous work:

\$2M DOE grant award to develop super building insulation via CO₂ foaming; fullydeveloped product prepared for commercialization stage

Key Partners:

None	

Project Goal:

Develop a new, environmentally clean building insulation with significantly superior performance but competitive costs on a per R-value basis. The key is to improve pore size, geometry, and orientation to maximize insulation value while keep using the most cost-effective foam extrusion production.

Purpose and Objectives

Problem Statement: The major technology gap in producing a superior, cost-effective building insulation is the production of submicron pores while maintaining a high porosity (>95%). In this project, our approach employs nanotechnology methods to gradually reduce pore size and implement morphology control so as to double R-value compared to state-of-the-art products, while maintaining the current cost per unit.

Target Market and Audience: The new technology will serve the residential/commercial building and new construction markets. The adoption of an advanced thermal insulation by these markets would provide annual U.S. energy savings of 0.361 Quads and \$8 billion in annual economic savings.

Impact of Project: The goal of this project is to develop a super-thermal insulation with 100% greater insulation value (R-9 to R-10 per inch) and manufacturing costs that are equal on a per-R-value basis (< \$0.70/ft²).

Achievement towards the goal will be measured by:

- a. 1-year: Reaching R-6 per inch insulation (< $0.40/ft^2$) using composite materials and CO₂ foaming process in a pilot production scale, a critical building block for using further nanotechnology to improve R-6 to R-9/R-10.
- b. 2-year: R-9 to R-10 per inch (< \$0.70/ft²) at a laboratory scale.
- c. 3 years: Commercialize the product via a venture capital-backed manufacturing company or strategic partnership.

Approach

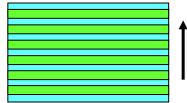
Approach:

- (1) Developing and commercializing HFC-free building insulation with R-value increased above R-5/inch
- (2) Producing advanced foam insulation with pore morphology control and CO₂ foaming so that R-6/inch foam building insulation can be manufactured with a competitive cost
- (3) Incorporating material nanotechnology to improve foam insulation value to R-7~10/inch at laboratory scale in two years, and subsequently commercializing this new product in the building materials market with a venture-capital supported project from years 3 to 5.

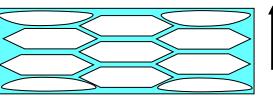
Key Issues:

- (1) Increasing insulation (R/inch) value while reducing the total cost on a per-R-value installed basis
- (2) Directly implementing technologies in most cost-effective foam extrusion product process
- (3) Significantly reduce pore size and control pore geometry in a fast foaming process

Distinctive Characteristics:

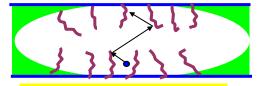

- (1) If technology development is successful, the impacts to market and energy savings are immediately accomplishable
- (2) The technology will lead to an advanced insulation with the least material consumption and lowest processing cost

ISTN Technology Innovations


(1) Aligning oblate (disk-shape) pores against heat flow direction to reduce thermal conductivity in application direction – increasing R <u>from R-4.2/inch to R-5.5/inch</u>.

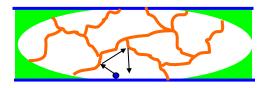
Net radiation ~ $4\epsilon T^3 \Delta T$

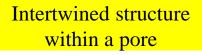
Radiation blocker


Resistor-in-series Minimum conductivity

Heat flow direction

(2) Adding reflective or absorptive radiation blockers in a layered structure can minimize radiation loss – increasing R <u>from R-5.5/inch to R-7/inch</u>.


(3) Secondary nanostructure (< <u>100 nm</u>) to enhance collisions with air molecules – increasing R <u>from R-7/inch to</u> *R-10/inch*.



Application

direction

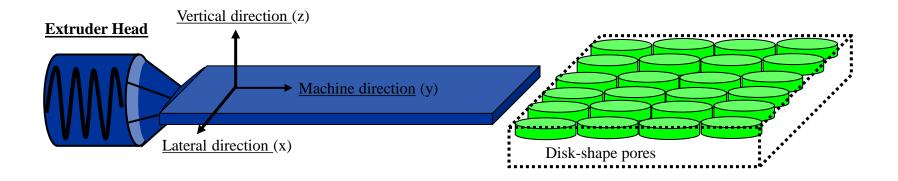
Surface incorporated structure

Progress and Accomplishments

Lessons Learned:

Factory trial – Die modification is substantially more difficult at larger scales due to the very high throughput

Accomplishments:


Previous project – Developed a cost-effective, commercial-stage R-5 per inch building insulation produced via environmentally clean CO_2 foaming process.

Current project – Achieved lower foam density of 40 kg/m³ at pilot scale compared to Q1 milestone of 50 kg/m³.

Market Impact:

Previous project – Extensive factory trial and performance testing data demonstrating R-5 per inch insulation value, and market-competitive production costs of ~0.30/ft². These milestones make the product commercialization-ready by being equivalent to state-of-the-art product, but manufactured using CO₂ rather than environmentally harmful HCFCs.

Program Status and Following Progress

- Full-capacity factory trial was successfully carried out on October 20-23, 2012 at Hoswell Shanghai insulation plant
- Commercial size insulation boards were produced without using any HFC and the products demonstrated exceptional insulation compared to any samples made by CO₂ blowing in previous experiments
- Aging studies of thermal conductivity and dimensional stability are still in progress in collaboration with Oak Ridge National Lab and Hoswell

Project Integration and Collaboration

Project Integration:

(1) Collaborating with a major manufacturer in China to conduct trials at a factory production line

(2) Closely working with a world renowned foam extrusion equipment supplier on testing die design configurations and alterations

(3) Potential commercialization agreements with several large insulation and chemicals companies to accelerate market adoption

Communications:

ET/BA workshop

Next Steps and Future Plans

Next Steps and Future Plans:

- Project period:
 - Optimize polymer blend composites and foaming production process to create R-6 per inch product at most effective cost
 - Incorporate nanotechnology structures into material and production process to increase R-value (R-9 to R-10) and maintain cost efficiency
 - Identify commercial partner to expedite time-to-market
- Longer-term:
 - Produce the new technology at a large-scale and make it the primary building insulation in the US and other markets
 - Significant U.S. energy and economic savings of 0.361 Quads and \$8 billion on an annual basis
 - Apply the technology platform created in this proposal to other insulation applications, such as refrigeration and high-temperature, which are also extremely important markets for energy conservation

Homogeneous Nucleation is the Challenge

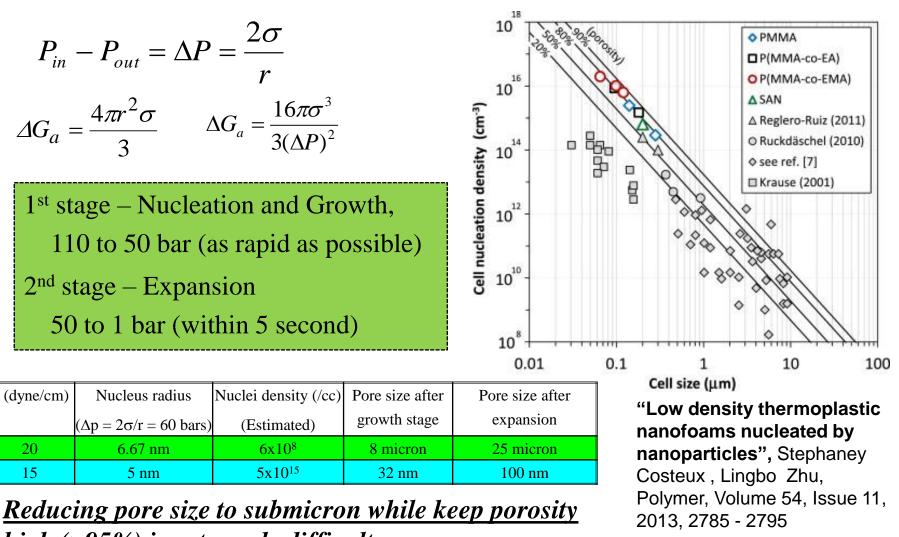
$$P_{in} - P_{out} = \Delta P = \frac{2\sigma}{r}$$
$$\Delta G_a = \frac{4\pi r^2 \sigma}{3} \qquad \Delta G_a = \frac{16\pi \sigma^3}{3(\Delta P)^2}$$

1st stage – Nucleation and Growth, 110 to 50 bar (as rapid as possible) 2nd stage – Expansion 50 to 1 bar (within 5 second)

Nuclei density (/cc)

(Estimated)

6x10⁸


 5×10^{15}

Pore size after

growth stage

8 micron

32 nm

<u>high (>95%) is extremely difficult.</u>

Nucleus radius

 $(\Delta p = 2\sigma/r = 60 \text{ bars})$

6.67 nm

5 nm

 σ (dyne/cm)

20

15