Lawrence Livermore National Laboratory

Improved Solvers for Advanced Engine Combustion Simulation

M. J. McNenly (PI), S. M. Aceves, D. L. Flowers, N. J. Killingsworth, G. M. Oxberry, G. Petitpas and R. A. Whitesides

Project ID # ACE076

2014 DOE Vehicle Technologies Program

Annual Merit Review and Peer Evaluation Meeting

June 17, 2014 - Washington, DC

This presentation does not contain any proprietary, confidential or otherwise restricted information

LLNL-PRES-653560

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Overview

Timeline

 Ongoing project with yearly direction from DOE

Budget

- FY12 funding: \$340K
- FY13 funding: \$340K
- FY14 funding: \$475K

Barriers

- Lack of fundamental knowledge of advanced engine combustion regimes
- Lack of modeling capability for combustion and emission control
- Lack of effective engine controls

Partners

- Ford, GM, Bosch, Volvo, Cummins, Convergent Sciences & <u>NVIDIA</u>
- Argonne NL, Sandia NL, Oak Ridge NL
- UC Berkeley, U. Wisc., U. Mich., LSU, Indiana U. & RWTH Aachen
- FACE working group, AEC MOU, SAE, Combustion Inst., <u>GPU Tech. Conf. &</u> <u>NSF HPC software planning</u>

Lawrence Livermore National Laboratory McNenly, et al. LLNL-PRES-653560

Relevance – Enhanced understanding of HECC requires expensive models that fully couple detailed kinetics with CFD

Objective

Create faster and more accurate combustion solvers.

Accelerates R&D on three major challenges identified in the VT multiyear program plan:

- A. Lack of fundamental knowledge of advanced engine combustion regimes
- C. Lack of modeling capability for combustion and emission control
- D. Lack of effective engine controls

Lawrence Livermore National Laboratory McNenly, et al. LLNL-PRES-653560

We want to use...

Detailed chemistry

Biodiesel component C₂₀H₄₂ (LLNL) 7.2K species 53K reaction steps

in highly resolved 3D simulations

Relevance – Enhanced understanding of HECC requires expensive models that fully couple detailed kinetics with CFD

Objective

Create faster and more accurate combustion solvers.

Accelerates R&D on three major challenges identified in the VT multiyear program plan:

- A. Lack of fundamental knowledge of advanced engine combustion regimes
- C. Lack of modeling capability for combustion and emission control
- D. Lack of effective engine controls

Lawrence Livermore National Laboratory McNenly, et al. LLNL-PRES-653560

Now we want to use...

Detailed chemistry

Ex. 9-component diesel surrogate (AVFL18) *C. Mueller et al. Energy Fuels, 2012.* +10K species +75K reaction steps

in highly resolved 3D simulations

Relevance – Enhanced understanding of HECC requires expensive models that fully couple detailed kinetics with CFD

Objective

Create faster and more accurate combustion solvers.

AMR14 achievements:

- Completed initial scaling analysis of chemistry/transport in engine CFD
- Completed multiprocessor reaction sensitivity tool for fuel researchers

 reduces wait from days to under an hour
- Established new partnership with NVIDIA for support and hardware developing engine simulations on GPUs
- Demonstrated beta version of mechanism diagnostic/debugging tool

Lawrence Livermore National Laboratory McNenly, et al. LLNL-PRES-653560

Now we want to use...

Detailed chemistry

- Ex. 9-component diesel surrogate (AVFL18) *C. Mueller et al. Energy Fuels, 2012.* +10K species
 - +75K reaction steps

Approach – Accelerate research in advanced combustion regimes by developing faster and more predictive engine models

1. Better algorithms and applied mathematics – same solution only faster

- 2. New computing architecture
 - more flops per second, per dollar, per watt

Accomplishments discussed in more detail in Whitesides' presentation (ACE012)

- 3. Improved physical models
 - more accuracy, better error control

Lawrence Livermore National Laboratory

Approach – FY14 milestones

Qtr	Due Date	Туре	Milestones	Status
Q1	12/31/2013	Regular	Detailed algorithm analysis and profiling for multi-species transport	Completed
Q2	3/31/2014	Regular	Create a chemistry tool for the reaction rate sensitivity analysis using LLNL's adaptive preconditioners	Completed
Q3	6/30/2014	Regular	Create a chemistry tool for reaction pathway analysis and error detection using LLNL's advanced combustion algorithms	Beta Version Running
Q4	9/30/2014	Regular	Improve every-cell chemistry calculation on the GPU	On Schedule

Accomplishment Outline

1. Better algorithms and applied mathematics – same solution only faster

- 2. New computing architecture
 - more flops per second, per dollar, per watt

Accomplishments discussed in more detail in Whitesides' presentation (ACE012)

- 3. Improved physical models
 - more accuracy, better error control

Lawrence Livermore National Laboratory

McNenly, et al. LLNL-PRES-653560

AMR13 Accomplishment: LLNL's new solver brings well-resolved chemistry and 3D CFD to 1-day engine design iterations

AMR14 Accomplishment: analysis of multispecies transport algorithms in engine CFD using accurate fuel chemistry

HCCI Engine (J. Dec)

- Detailed fuel mechanisms:
 - n-heptane (160/654 species)
 - iso-octane (874 species)
 - n-hexadecane (2115 species)
 - E85 surrogate (312 species)
 - Gasoline surrogate (1389 species)
- Lean burn ($\phi = 0.4$)
- High EGR (50%)
- Initial temperature set to match ignition time

Lawrence Livermore National Laboratory McNenly, et al. LLNL-PRES-653560

AMR14 Accomplishment: detailed algorithm analysis reveals when the chemistry and transport calculation costs are dominant

McNenly, et al. LLNL-PRES-653560

AMR14 Accomplishment: detailed algorithm analysis reveals when the chemistry and transport calculation costs are dominant

McNenly, et al. LLNL-PRES-653560

12

The concepts advanced in this project are applied to mechanism development tools to eliminate other bottlenecks in HECC R&D

State-of-the-art mechanisms must be developed and maintained with considerable care:

 $C_{20}H_{42}$ (LLNL)

- 7.2K species
- 53K reaction steps

How much data?

- mechanism file 4MB (64K lines)
- thermodynamics file 8MB (104K lines)

The challenge from a publishing standpoint is equivalent to printing 9.5 combustion textbooks* with zero typos.

* equivalent length of Warnatz, Maas & Dibble, Combustion. Lawrence Livermore National Laboratory -McNenly, et al. LLNL-PRES-653560

How can the advanced combustion numerics project help?

- Accelerate fuel development models using LLNL's adaptive preconditioner approach (*e.g.*, flame speed, 1D diffusion, piston model, RCM model, *etc.*)
- Create mechanism debugging tools by leveraging the analysis used to speedup the combustion algorithms

Top priority (Pitz): A-Factor sensitivity

$$\underbrace{k = AT^n \exp(-E_a / RT)}_{AT}$$

Brute force ignition delay calculation perturbing each reaction's A-factor independently

AMR14 Accomplishment: Single-core version of A-factor sensitivity is an order of magnitude improvement over current commercial tools

AMR14 Accomplishment: Multi-core version of the A-factor sensitivity delivers seamless scalability to the available computing resources

Accomplishment Outline

1. Better algorithms and applied mathematics – same solution only faster

2. New computing architecture

- more flops per second, per dollar, per watt

Accomplishments discussed in more detail in Whitesides' presentation (ACE012)

- 3. Improved physical models
 - more accuracy, better error control

Lawrence Livermore National Laboratory

McNenly, et al. LLNL-PRES-653560

AMR14 Accomplishment: Established a new partnership with NVIDIA for support and hardware developing engine simulations on GPUs

New Tesla K20 GPUs w/2,496 CUDA cores provided for testing

LLNL used NVIDIA's GLU sparse matrix solver to create a 100% GPU-based multizone solver:

- GLU developed internally at NVIDIA by Naumov & Chetlur
- original application is for circuit simulations (SPICE)
- contains direct sparse solvers for nonsymmetric matrices
- LLNL given early access (beta tester)
- latest update includes recommended features to speedup engine CFD simulations

Lawrence Livermore National Laboratory McNenly, et al. LLNL-PRES-653560

Accomplishment Outline

1. Better algorithms and applied mathematics – same solution only faster

- 2. New computing architecture
 - more flops per second, per dollar, per watt

Accomplishments discussed in more detail in Whitesides' presentation (ACE012)

- 3. Improved physical models
 - more accuracy, better error control

Lawrence Livermore National Laboratory

McNenly, et al. LLNL-PRES-653560

Ignition delay solver is augmented to provide a detailed report of the system state when the ODE integrator issues any warning or error

Analyzing the computational workload for the ODE solver can detect mechanism problems affecting accuracy and robustness

AMR14 Accomplishment: we have created a suite of new tools using our high performance chemistry solver to aid in fuel mechanism design

Response to reviewers comments

AMR13 comments were generally positive with the reviewers posing three basic questions:

1. Is it correct?

The LLNL thermochemistry library has been verified against other available solvers (Cantera, Chemkin & TChem) and is found to agree to within a relative tolerance of $O(10^{-4})$ – corresponding to the difference in molecular weights and physical constants. The adaptive preconditioner solver has been verified against traditional direct approaches. The ignition delay times and major species concentrations have a relative accuracy within an order of magnitude of the integrator tolerance and typically achieve an accuracy of $O(10^{-7})$.

2. Has it been validated for HECC engines?

The simulation validation for HECC engines is led by the ACE-012 project at LLNL, and is featured in Whitesides presentation at AMR14. We actively collaborate to ensure that the new solvers are applicable to engine CFD simulation, with this project leading the verification effort.

3. Do you still need to speedup chemistry?

Depends on the number of multizones needed to accurately resolve combustion (see slide11). While this remains an open question, there are a number of simulations used in industry where the CFD transport is the dominant cost. This project is shifting its focus to accelerate other bottlenecks in HECC research: multispecies transport in CFD; mechanism development and debugging; and detailed spray dynamics.

Lawrence Livermore National Laboratory McNenly, et al. LLNL-PRES-653560

Collaboration – We have ongoing interactions with industry, national laboratories, and universities

- Cummins; CPU/GPU solvers for Converge CFD to run biodiesel engine simulations on new Indiana Univ. GPU supercomputer.
- Ford; gaseous direct injection, chemistry solver/mechanism assistance
- Volvo; multi-zone cycle simulation, OpenFOAM model development
- Bosch; High Performance Computing of HCCI/SI transition
- **GE Research**; new solvers applied to combustor turbine systems
- Convergent Science Inc. (CSI); Multi-zone model development, thermochemical functions (CPU/GPU), adaptive preconditioners (CPU)
- **NVIDIA;** new GPU hardware, new GPU software & support for HECC simulations
- Argonne National Laboratory; mechanism debugging and sensitivity analysis
- National Renewable Energy Laboratory; microliter fuel ignition tester
- Sandia National Laboratory; experiment simulations for HCCI and PCCI
- Universities; UC Berkeley, Univ. Wisconsin, Univ. Michigan, UC Merced, Univ. Indiana, Louisiana St. Univ. and RWTH Aachen
- Fuels for Advanced Combustion Engines (FACE); working group
- Advanced Engine Combustion (AEC); working group (Industry, National labs, Univ. of Wisc., Univ of Mich., MIT, UC Berkeley); semiannual presentations

Remaining challenges and barriers to High Efficiency Clean Combustion (HECC) research

The following areas are challenges facing the creation of a truly predictive simulation tool for use in the engine design community:

- Robust detailed mechanism usage in engine CFD
 - more automated mechanism debugging tools
 - greater user control of chemistry errors
- Reduced computational cost for multispecies transport in engine CFD
- More accurate coupling between chemistry and transport models
- Detailed (predictive) spray dynamics with reduced computational cost
- More development for future engine simulations including massively parallel, non-uniform architectures
- Understanding incipient soot reaction pathways
- Understanding nonlinear fuel component interactions

Future Work – We will continue to explore strategies for improving efficiency and accuracy of chemistry and engine CFD

Ongoing)	 FY14 – [Q3 Milestone] Complete the mechanism diagnostic and debugging suite of tools FY14 – [Q4 Milestone] Improve high fidelity multizone chemistry on the GPU for engine CFD simulations FY14 – Continue to improve availability within the MOU for the new solvers – pursue online version of mechanism diagnostic tools
Proposed	supports diesel research in ACE012, ACE013	 FY15 – Accelerate multispecies diffusion and advection algorithms Direct algorithm improvements New GPU transport algorithms Reduced order models with error control FY15 – Add more applications to the turnkey package of the chemistry solvers (diffusion flames, extinction, sensitivity, etc.)
Planned	future solvers for use in CFD packages	 FY15/16 – Rigorous error analysis of the multizone combustion solver for direct user control FY15/16 – Accelerate detailed spray dynamics algorithms Eivermore National Laboratory

Summary: The advanced combustion numerics project completed several key tasks toward the program's objectives for HECC R&D

McNenly, et al. LLNL-PRES-653560

Technical Back-Up Slides (limit 5)

Implicit methods are necessary to integrate the chemical time scales over an engine cycle

28

What is the physical meaning of the Jacobian?

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \frac{\partial f_N}{\partial x_2} & \cdots & \frac{\partial f_N}{\partial x_N} \end{pmatrix}$$

Element: $J_{i,j} = \frac{dW_i}{dC_j}, \quad W_i = \frac{dC_i}{dt}$
Magnitude represents the characteristic frequency at which the two species are coupled
10⁻⁴ 10 10
Matrix element magnitude 4 (relative to diagonal)

Lawrence Livermore National Laboratory McNenly, *et al.* LLNL-PRES-653560 L

Approximate Jacobians can be used to precondition iterative linear system solvers like GMRES

Lawrence Livermore National Laboratory McNenly, et al. LLNL-PRES-653560

Adaptive preconditioner using on-the-fly reduction produces the same solution significantly faster

Two approaches to faster chemistry solutions

Ex. iso-octane 874 species 3796 reactions

1. Classic mechanism

Ex.197 species

- Smaller ODE size
- Smaller Jacobian
- Poor low T accuracy

2. LLNL's adaptive preconditioner:

Our solver is as fast as the reduced mechanism without any loss of accuracy

Filter out 50-75% of the least important reactions

- Identical ODE
- Reduced mech only in preconditioner

Lawrence Livermore National Laboratory McNenly, et al. LLNL-PRES-653560

LLNL's solver delivers near linear scaling for mechanisms using the new PLOG reactions

